Abstract

Pressure-broadening coefficients for 12C16O2 lines have been calculated with a recent model derived from the Robert and Bonamy approach which leads to more accurate results than the previouslyused Anderson-Tsao-Curnutte model. Systematic calculations of CO2–CO2, CO2–H2O, CO2–N2, and CO2–O2 broadening coefficients in the 300–2400-K temperature range are presented. The results are suitable for both IR and Raman lines and should be useful for spectra calculations. Tabulations of the broadening coefficients are given together with simple analytical expressions for their rotational quantum number and temperature dependences.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. S. Bernstein, “Band Model Parameters for the Parallel Bands of Linear Triatomic Molecules. I: Theory,” J. Quant. Spectrosc. Radiat. Transfer 23, 157 (1980).
    [CrossRef]
  2. J. Taine, “A Line-by-Line Calculation of Low-Resolution Radiative Properties of CO2-CO-Transparent Nonisothermal Gases Mixtures up to 3000 K,” J. Quant. Spectrosc. Radiat. Transfer 30, 371 (1983).
    [CrossRef]
  3. J. M. Hartmann, R. Levi di Leon, J. Taine, “Line by Line and Narrow Band Statistical Model Calculations for H2O,” J. Quant. Spectrosc. Radiat. Transfer 32, 119 (1984).
    [CrossRef]
  4. R. Levi di Leon, J. Taine, “Infrared Absorption by Gas Mixtures in the 300–850 K Temperature Range I—4.3 μm and 2.7 μm CO2 Spectra,” J. Quant. Spectrosc. Radiat. Transfer 35, 337 (1986).
    [CrossRef]
  5. N. Papineau, “Signature infrarouge de flammes; données spectrales du gaz carbonique a température élevée,” Rech. Aerosp. 3, 31 (1987).
  6. W. Malkmus, “Infrared Emissivity of Carbon Dioxyde (4.3-μ Band),” J. Opt. Soc. Am. 53, 951 (1963).
    [CrossRef]
  7. R. M. Goody, Atmospheric Radiation (Clarendon, Oxford, 1964), pp. 122–170.
  8. Y. Ben Aryeh, “Spectral Emissivity Calculations by the Statistical Model Applied to the 4.3-μ Bands of CO2 at High Temperature,” Appl. Opt. 6, 1049 (1967).
    [CrossRef] [PubMed]
  9. S. J. Young, “Nonisothermal Band Model Theory,” J. Quant. Spectrosc. Radiat. Transfer 18, 1 (1977); “Evaluation of Noniso-thermal Band Models for H2O,” J. Quant. Spectrosc. Radiat. Transfer 18, 29 (1977).
    [CrossRef]
  10. L. S. Bernstein, D. C. Robertson, J. A. Conant, “Band-Model Parameters for the 4.3 μm CO2 Band from 200 to 3000°K—II: Prediction, Comparison to Experiment, and Application to Plume Emission-Absorption Calculations,” J. Quant. Spectrosc. Radiat. Transfer 23, 169 (1980).
    [CrossRef]
  11. A. Soufiani, J. M. Hartmann, J. Taine, “Validity of Band-Model Calculations for CO2 and H2O Applied to Radiative Properties and Conductive-Radiative Transfer,” J. Quant. Spectrosc. Radiat. Transfer 33, 243 (1985).
    [CrossRef]
  12. A. Soufiani, J. Taine, “Application of Statistical Narrow-band Model to Coupled Radiation and Convection at High Temperature,” Int. J. Heat Mass Transfer 30, 437 (1987).
    [CrossRef]
  13. N. Papineau, M. Pealat, “Numerical Simulation of the Coherent Anti-Stokes Raman Scattering Spectrum of CO2,” J. Chem. Phys. 79, 5758 (1983); “CARS Spectrum of High Temperature CO2: Analysis and Simulation,” Appl. Opt. 24, 3002 (1985).
    [CrossRef] [PubMed]
  14. R. J. Hall, “Coherent Anti-Stokes Raman Spectroscopic Modeling for Combustion Diagnostics,” Opt. Eng. 22, 322 (1983).
    [CrossRef]
  15. R. J. Hall, J. H. Stufflebeam, “Quantitative CARS Spectroscopy of CO2 and N2O,” Appl. Opt. 33, 4319 (1984).
    [CrossRef]
  16. C. Cousin, R. Le Doucen, J. P. Houdeau, C. Boulet, A. Henry, “Air Broadened Linewidths, Intensities, and Spectral Line Shapes for CO2 at 4.3 μm in the Region of the AMTS Instrument,” Appl. Opt. 25, 2434 (1986).
    [CrossRef] [PubMed]
  17. C. Cousin, R. Le Doucen, C. Boulet, A. Henry, D. Robert, “Temperature and Frequency Dependences of Absorption in the Microwindows of the 4.3 μm CO2 Band: a Consequence of Line Coupling,” J. Quant. Spectrosc. Radiat. Transfer 36, 521 (1986).
    [CrossRef]
  18. M. O. Bulanin, A. B. Dokuchaev, M. V. Tonkov, N. N. Filippov, “Influence of Line Interference on the Vibration-Rotation Band Shapes,” J. Quant. Spectrosc. Radiat. Transfer 31, 521 (1984).
    [CrossRef]
  19. D. E. Burch, D. A. Gryvnak, R. R. Patty, C. E. Bartky, “Absorption of Infrared Radiant Energy by CO2 and H2O. IV: Shapes of Collision-Broadened CO2 Lines,” J. Opt. Soc. Am. 59, 267 (1969).
    [CrossRef]
  20. J. M. Hartmann, L. Rosenmann, J. Taine, “Temperature and Pressure Dependences of the Absorption in the Narrow R66-R68 Window of the 12C16O2ν3 -Band,” J. Quant. Spectrosc. Radiat. Transfer, still unknown (1988) in press.
  21. L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Collisional Broadening of CO2 IR lines. II: Calculations,” J. Chem. Phys. 88, 2999 (1988).
    [CrossRef]
  22. C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par source laser. II. Etude expérimentale de l’élargissement des raies de la transition 0001-(1000,0200)I de CO2 perturbé par N2. Application de la théorie d’Anderson, Tsao et Curnutte au calcul des largeurs des raies de CO2 pur, et perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
    [CrossRef]
  23. E. Arié, N. Lacome, P. Arcas, A. Levy, “Oxygen- and Air-Broadened Linewidths of CO2,” Appl. Opt. 25, 2584 (1986).
    [CrossRef] [PubMed]
  24. G. Yamamoto, M. Tanaka, T. Aoki, “Estimation of Rotational Line Widths of Carbon Dioxide Bands,” J. Quant. Spectrosc. Radiat. Transfer 9, 371 (1969).
    [CrossRef]
  25. J. P. Bouanich, C. Brodbeck, “Contribution des moments octupolaire et hexadécapolaire à l’élargissement des raies spectrales de molécules linéaires,” J. Quant. Spectrosc. Radiat. Transfer 14, 141 (1974).
    [CrossRef]
  26. D. Robert, J. Bonamy, “Short Range Force Effects in Semi-classical Molecular Line Broadening Calculations,” J. Phys. Paris 40, 923 (1979).
  27. M. C. Herpin, P. Lallemand, “Study of the Broadening of the Rotational Raman Lines of CO2 Perturbed by Rare Gases,” J. Quant. Spectrosc. Radiat. Transfer 15, 779 (1975).
    [CrossRef]
  28. K. S. Jammu, G. E. St. John, H. L. Welsh, “Pressure Broadening of the Rotational Raman Lines of Some Simple Gases,” Can. J. Phys. 44, 797 (1966).
    [CrossRef]
  29. C. G. Gray, J. Van Kranendonk, “Calculation of the Pressure Broadening of Rotational Raman Lines due to Multipolar and Dispersion Interaction,” Can. J. Phys. 44, 2411 (1966).
    [CrossRef]
  30. R. P. Srivastava, H. R. Zaidi, “Self-Broadened Widths of Rotational Raman and Infrared Lines in CO2,” Can. J. Phys. 55, 549 (1977).
    [CrossRef]
  31. Y. Ouazzany, J. P. Boquillon, H. W. Schrötter, “High Resolution CARS Spectrum and Analysis of the ν1-Band Q Branch of Carbon Dioxyde,” submitted to Mol. Phys.
  32. M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the Parameters of the Vibrational-Rotational Lines in the 9.4 and 10.4 μm Bands of CO2 at Different Temperatures,” Opt. Spectrosc. 48, 403 (1980).
  33. L. Rosenmann, M. Y. Perrin, J. Taine, “Collisional Broadening of CO2 IR Lines. I. Diode Laser Measurements for CO2-N2 Mixtures in the 295–815 K Temperature Range,” J. Chem. Phys. 88, 2995 (1988).
    [CrossRef]
  34. L. Rosenmann, M. Y. Perrin, J. M. Hartmann, J. Taine, “Diode Laser Measurements and Calculations of CO2 Line-Broadening by H2O from 416 to 805 K and by N2 from 296 to 803 K,” submitted to J. Quant. Spectrosc. Radiat. Transfer.
  35. P. W. Anderson, “Pressure Broadening in the Microwave and Infrared Regions,” Phys. Rev. 76, 647 (1949).
    [CrossRef]
  36. C. J. Tsao, B. Curnutte, “Line-Widths of Pressure-Broadened Spectral Lines,” J. Quant. Spectrosc. Radiat. Transfer 2, 41 (1962).
    [CrossRef]
  37. J. Bonamy, D. Robert, “Atom-Atom Potential in Rotational Line Broadening for Molecular Gases: Application to CO Lines Broadened by CO, N2, O2 and NO,” J. Quant. Spectrosc. Radiat. Transfer 16, 185 (1976).
    [CrossRef]
  38. M. Margottin-Maclou, P. Dahoo, A. Henry, L. Henry, “Self-Broadening Parameters in the ν3 Band of 14N216O,” J. Mol. Spectrosc. 111, 275 (1985).
    [CrossRef]
  39. J. M. Hartmann, M. Y. Perrin, J. Taine, L. Rosenmann, “Diode-Laser Measurements and Calculations of CO 1-0 P(4) Line Broadening in the 295 to 765 K Temperature Range,” J. Quant. Spectrosc. Radiat. Transfer 35, 357 (1986).
    [CrossRef]
  40. J. M. Hartmann, J. Taine, J. Bonamy, B. Labani, D. Robert, “Collisional Broadening of Rotation-Vibration Lines for Asymmetric-top Molecules. II H2O Diode Laser Measurements in the 400–900 K Range; Calculations in the 300–2000 K Range,” J. Chem. Phys. 86, 144 (1987).
    [CrossRef]
  41. B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional Broadening of Rotation-Vibration Lines for Asymmetric-Top Molecules. III Self-Broadening Case; Application to H2O,” J. Chem. Phys. 87, 2781 (1987).
    [CrossRef]
  42. A. Bauer, M. Godon, M. Kheddar, J. M. Hartmann, J. Bonamy, D. Robert, “Temperature and Perturber Dependences of Water Vapor 380 GHz-Line Broadening,” J. Quant. Spectrosc. Radiat. Transfer 37, 531 (1987).
    [CrossRef]
  43. A. Soufiani, L. Rosenmann, “Diode-Laser Measurements and Calculations of CO-CO2 Line-Widths at High Temperature,” in press. J. Quant. Spectrosc. Radiat. Transfer.
  44. R. J. Hall, “Pressure-Broadened Linewidths for N2 Coherent Anti-Stokes Raman Spectroscopy Thermometry,” Appl. Spectrosc. 34, 700 (1980).
    [CrossRef]
  45. J. Bonamy, D. Robert, C. Boulet, “Simplified Models for the Temperature Dependence of Linewidths at Elevated Temperatures and Applications to CO Broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23 (1984).
    [CrossRef]
  46. B. Lavorel et al., “Rotational Collisional Line-Broadening at High Temperatures in the N2 Fundamental Q-Branch Studied with Stimulated Raman Spectroscopy,” J. Phys. 47, 417 (1986).
    [CrossRef]
  47. J. M. Flaud, C. Camy-Peyret; private communication.
  48. J. M. Hartmann, “Calculation of Self-Broadening Coefficients for H2O Raman-Lines,” J. Mol. Spectrosc. 127, 35 (1988).
    [CrossRef]
  49. A. Henry, M. Margottin-Maclou, N. Lacome, “N2- and O2-Broadening Parameters in the ν3 band of 14N216O,” J. Mol. Spectrosc. 111, 291 (1985).
    [CrossRef]
  50. H. S. Lowry, C. J. Fisher, “Line Parameter Measurements and Calculations of CO Broadened by Nitrogen at Elevated Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 27, 585 (1982).
    [CrossRef]
  51. D. A. Greenhalgh, F. M. Porter, “A Polynomial Energy-Gap Model for Molecular Linewidths,” J. Quant. Spectrosc. Radiat. Transfer 34, 95 (1985).
    [CrossRef]

1988

L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Collisional Broadening of CO2 IR lines. II: Calculations,” J. Chem. Phys. 88, 2999 (1988).
[CrossRef]

L. Rosenmann, M. Y. Perrin, J. Taine, “Collisional Broadening of CO2 IR Lines. I. Diode Laser Measurements for CO2-N2 Mixtures in the 295–815 K Temperature Range,” J. Chem. Phys. 88, 2995 (1988).
[CrossRef]

J. M. Hartmann, “Calculation of Self-Broadening Coefficients for H2O Raman-Lines,” J. Mol. Spectrosc. 127, 35 (1988).
[CrossRef]

1987

J. M. Hartmann, J. Taine, J. Bonamy, B. Labani, D. Robert, “Collisional Broadening of Rotation-Vibration Lines for Asymmetric-top Molecules. II H2O Diode Laser Measurements in the 400–900 K Range; Calculations in the 300–2000 K Range,” J. Chem. Phys. 86, 144 (1987).
[CrossRef]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional Broadening of Rotation-Vibration Lines for Asymmetric-Top Molecules. III Self-Broadening Case; Application to H2O,” J. Chem. Phys. 87, 2781 (1987).
[CrossRef]

A. Bauer, M. Godon, M. Kheddar, J. M. Hartmann, J. Bonamy, D. Robert, “Temperature and Perturber Dependences of Water Vapor 380 GHz-Line Broadening,” J. Quant. Spectrosc. Radiat. Transfer 37, 531 (1987).
[CrossRef]

N. Papineau, “Signature infrarouge de flammes; données spectrales du gaz carbonique a température élevée,” Rech. Aerosp. 3, 31 (1987).

A. Soufiani, J. Taine, “Application of Statistical Narrow-band Model to Coupled Radiation and Convection at High Temperature,” Int. J. Heat Mass Transfer 30, 437 (1987).
[CrossRef]

1986

C. Cousin, R. Le Doucen, J. P. Houdeau, C. Boulet, A. Henry, “Air Broadened Linewidths, Intensities, and Spectral Line Shapes for CO2 at 4.3 μm in the Region of the AMTS Instrument,” Appl. Opt. 25, 2434 (1986).
[CrossRef] [PubMed]

C. Cousin, R. Le Doucen, C. Boulet, A. Henry, D. Robert, “Temperature and Frequency Dependences of Absorption in the Microwindows of the 4.3 μm CO2 Band: a Consequence of Line Coupling,” J. Quant. Spectrosc. Radiat. Transfer 36, 521 (1986).
[CrossRef]

R. Levi di Leon, J. Taine, “Infrared Absorption by Gas Mixtures in the 300–850 K Temperature Range I—4.3 μm and 2.7 μm CO2 Spectra,” J. Quant. Spectrosc. Radiat. Transfer 35, 337 (1986).
[CrossRef]

E. Arié, N. Lacome, P. Arcas, A. Levy, “Oxygen- and Air-Broadened Linewidths of CO2,” Appl. Opt. 25, 2584 (1986).
[CrossRef] [PubMed]

J. M. Hartmann, M. Y. Perrin, J. Taine, L. Rosenmann, “Diode-Laser Measurements and Calculations of CO 1-0 P(4) Line Broadening in the 295 to 765 K Temperature Range,” J. Quant. Spectrosc. Radiat. Transfer 35, 357 (1986).
[CrossRef]

B. Lavorel et al., “Rotational Collisional Line-Broadening at High Temperatures in the N2 Fundamental Q-Branch Studied with Stimulated Raman Spectroscopy,” J. Phys. 47, 417 (1986).
[CrossRef]

1985

M. Margottin-Maclou, P. Dahoo, A. Henry, L. Henry, “Self-Broadening Parameters in the ν3 Band of 14N216O,” J. Mol. Spectrosc. 111, 275 (1985).
[CrossRef]

A. Henry, M. Margottin-Maclou, N. Lacome, “N2- and O2-Broadening Parameters in the ν3 band of 14N216O,” J. Mol. Spectrosc. 111, 291 (1985).
[CrossRef]

D. A. Greenhalgh, F. M. Porter, “A Polynomial Energy-Gap Model for Molecular Linewidths,” J. Quant. Spectrosc. Radiat. Transfer 34, 95 (1985).
[CrossRef]

A. Soufiani, J. M. Hartmann, J. Taine, “Validity of Band-Model Calculations for CO2 and H2O Applied to Radiative Properties and Conductive-Radiative Transfer,” J. Quant. Spectrosc. Radiat. Transfer 33, 243 (1985).
[CrossRef]

1984

M. O. Bulanin, A. B. Dokuchaev, M. V. Tonkov, N. N. Filippov, “Influence of Line Interference on the Vibration-Rotation Band Shapes,” J. Quant. Spectrosc. Radiat. Transfer 31, 521 (1984).
[CrossRef]

J. M. Hartmann, R. Levi di Leon, J. Taine, “Line by Line and Narrow Band Statistical Model Calculations for H2O,” J. Quant. Spectrosc. Radiat. Transfer 32, 119 (1984).
[CrossRef]

R. J. Hall, J. H. Stufflebeam, “Quantitative CARS Spectroscopy of CO2 and N2O,” Appl. Opt. 33, 4319 (1984).
[CrossRef]

J. Bonamy, D. Robert, C. Boulet, “Simplified Models for the Temperature Dependence of Linewidths at Elevated Temperatures and Applications to CO Broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23 (1984).
[CrossRef]

1983

J. Taine, “A Line-by-Line Calculation of Low-Resolution Radiative Properties of CO2-CO-Transparent Nonisothermal Gases Mixtures up to 3000 K,” J. Quant. Spectrosc. Radiat. Transfer 30, 371 (1983).
[CrossRef]

N. Papineau, M. Pealat, “Numerical Simulation of the Coherent Anti-Stokes Raman Scattering Spectrum of CO2,” J. Chem. Phys. 79, 5758 (1983); “CARS Spectrum of High Temperature CO2: Analysis and Simulation,” Appl. Opt. 24, 3002 (1985).
[CrossRef] [PubMed]

R. J. Hall, “Coherent Anti-Stokes Raman Spectroscopic Modeling for Combustion Diagnostics,” Opt. Eng. 22, 322 (1983).
[CrossRef]

1982

H. S. Lowry, C. J. Fisher, “Line Parameter Measurements and Calculations of CO Broadened by Nitrogen at Elevated Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 27, 585 (1982).
[CrossRef]

1980

R. J. Hall, “Pressure-Broadened Linewidths for N2 Coherent Anti-Stokes Raman Spectroscopy Thermometry,” Appl. Spectrosc. 34, 700 (1980).
[CrossRef]

L. S. Bernstein, D. C. Robertson, J. A. Conant, “Band-Model Parameters for the 4.3 μm CO2 Band from 200 to 3000°K—II: Prediction, Comparison to Experiment, and Application to Plume Emission-Absorption Calculations,” J. Quant. Spectrosc. Radiat. Transfer 23, 169 (1980).
[CrossRef]

L. S. Bernstein, “Band Model Parameters for the Parallel Bands of Linear Triatomic Molecules. I: Theory,” J. Quant. Spectrosc. Radiat. Transfer 23, 157 (1980).
[CrossRef]

M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the Parameters of the Vibrational-Rotational Lines in the 9.4 and 10.4 μm Bands of CO2 at Different Temperatures,” Opt. Spectrosc. 48, 403 (1980).

1979

D. Robert, J. Bonamy, “Short Range Force Effects in Semi-classical Molecular Line Broadening Calculations,” J. Phys. Paris 40, 923 (1979).

1977

R. P. Srivastava, H. R. Zaidi, “Self-Broadened Widths of Rotational Raman and Infrared Lines in CO2,” Can. J. Phys. 55, 549 (1977).
[CrossRef]

S. J. Young, “Nonisothermal Band Model Theory,” J. Quant. Spectrosc. Radiat. Transfer 18, 1 (1977); “Evaluation of Noniso-thermal Band Models for H2O,” J. Quant. Spectrosc. Radiat. Transfer 18, 29 (1977).
[CrossRef]

1976

J. Bonamy, D. Robert, “Atom-Atom Potential in Rotational Line Broadening for Molecular Gases: Application to CO Lines Broadened by CO, N2, O2 and NO,” J. Quant. Spectrosc. Radiat. Transfer 16, 185 (1976).
[CrossRef]

1975

M. C. Herpin, P. Lallemand, “Study of the Broadening of the Rotational Raman Lines of CO2 Perturbed by Rare Gases,” J. Quant. Spectrosc. Radiat. Transfer 15, 779 (1975).
[CrossRef]

1974

J. P. Bouanich, C. Brodbeck, “Contribution des moments octupolaire et hexadécapolaire à l’élargissement des raies spectrales de molécules linéaires,” J. Quant. Spectrosc. Radiat. Transfer 14, 141 (1974).
[CrossRef]

1972

C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par source laser. II. Etude expérimentale de l’élargissement des raies de la transition 0001-(1000,0200)I de CO2 perturbé par N2. Application de la théorie d’Anderson, Tsao et Curnutte au calcul des largeurs des raies de CO2 pur, et perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
[CrossRef]

1969

G. Yamamoto, M. Tanaka, T. Aoki, “Estimation of Rotational Line Widths of Carbon Dioxide Bands,” J. Quant. Spectrosc. Radiat. Transfer 9, 371 (1969).
[CrossRef]

D. E. Burch, D. A. Gryvnak, R. R. Patty, C. E. Bartky, “Absorption of Infrared Radiant Energy by CO2 and H2O. IV: Shapes of Collision-Broadened CO2 Lines,” J. Opt. Soc. Am. 59, 267 (1969).
[CrossRef]

1967

1966

K. S. Jammu, G. E. St. John, H. L. Welsh, “Pressure Broadening of the Rotational Raman Lines of Some Simple Gases,” Can. J. Phys. 44, 797 (1966).
[CrossRef]

C. G. Gray, J. Van Kranendonk, “Calculation of the Pressure Broadening of Rotational Raman Lines due to Multipolar and Dispersion Interaction,” Can. J. Phys. 44, 2411 (1966).
[CrossRef]

1963

1962

C. J. Tsao, B. Curnutte, “Line-Widths of Pressure-Broadened Spectral Lines,” J. Quant. Spectrosc. Radiat. Transfer 2, 41 (1962).
[CrossRef]

1949

P. W. Anderson, “Pressure Broadening in the Microwave and Infrared Regions,” Phys. Rev. 76, 647 (1949).
[CrossRef]

Anderson, P. W.

P. W. Anderson, “Pressure Broadening in the Microwave and Infrared Regions,” Phys. Rev. 76, 647 (1949).
[CrossRef]

Aoki, T.

G. Yamamoto, M. Tanaka, T. Aoki, “Estimation of Rotational Line Widths of Carbon Dioxide Bands,” J. Quant. Spectrosc. Radiat. Transfer 9, 371 (1969).
[CrossRef]

Arcas, P.

Arié, E.

E. Arié, N. Lacome, P. Arcas, A. Levy, “Oxygen- and Air-Broadened Linewidths of CO2,” Appl. Opt. 25, 2584 (1986).
[CrossRef] [PubMed]

C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par source laser. II. Etude expérimentale de l’élargissement des raies de la transition 0001-(1000,0200)I de CO2 perturbé par N2. Application de la théorie d’Anderson, Tsao et Curnutte au calcul des largeurs des raies de CO2 pur, et perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
[CrossRef]

Bartky, C. E.

Bauer, A.

A. Bauer, M. Godon, M. Kheddar, J. M. Hartmann, J. Bonamy, D. Robert, “Temperature and Perturber Dependences of Water Vapor 380 GHz-Line Broadening,” J. Quant. Spectrosc. Radiat. Transfer 37, 531 (1987).
[CrossRef]

Ben Aryeh, Y.

Bernstein, L. S.

L. S. Bernstein, D. C. Robertson, J. A. Conant, “Band-Model Parameters for the 4.3 μm CO2 Band from 200 to 3000°K—II: Prediction, Comparison to Experiment, and Application to Plume Emission-Absorption Calculations,” J. Quant. Spectrosc. Radiat. Transfer 23, 169 (1980).
[CrossRef]

L. S. Bernstein, “Band Model Parameters for the Parallel Bands of Linear Triatomic Molecules. I: Theory,” J. Quant. Spectrosc. Radiat. Transfer 23, 157 (1980).
[CrossRef]

Bonamy, J.

A. Bauer, M. Godon, M. Kheddar, J. M. Hartmann, J. Bonamy, D. Robert, “Temperature and Perturber Dependences of Water Vapor 380 GHz-Line Broadening,” J. Quant. Spectrosc. Radiat. Transfer 37, 531 (1987).
[CrossRef]

J. M. Hartmann, J. Taine, J. Bonamy, B. Labani, D. Robert, “Collisional Broadening of Rotation-Vibration Lines for Asymmetric-top Molecules. II H2O Diode Laser Measurements in the 400–900 K Range; Calculations in the 300–2000 K Range,” J. Chem. Phys. 86, 144 (1987).
[CrossRef]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional Broadening of Rotation-Vibration Lines for Asymmetric-Top Molecules. III Self-Broadening Case; Application to H2O,” J. Chem. Phys. 87, 2781 (1987).
[CrossRef]

J. Bonamy, D. Robert, C. Boulet, “Simplified Models for the Temperature Dependence of Linewidths at Elevated Temperatures and Applications to CO Broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23 (1984).
[CrossRef]

D. Robert, J. Bonamy, “Short Range Force Effects in Semi-classical Molecular Line Broadening Calculations,” J. Phys. Paris 40, 923 (1979).

J. Bonamy, D. Robert, “Atom-Atom Potential in Rotational Line Broadening for Molecular Gases: Application to CO Lines Broadened by CO, N2, O2 and NO,” J. Quant. Spectrosc. Radiat. Transfer 16, 185 (1976).
[CrossRef]

Boquillon, J. P.

Y. Ouazzany, J. P. Boquillon, H. W. Schrötter, “High Resolution CARS Spectrum and Analysis of the ν1-Band Q Branch of Carbon Dioxyde,” submitted to Mol. Phys.

Bouanich, J. P.

J. P. Bouanich, C. Brodbeck, “Contribution des moments octupolaire et hexadécapolaire à l’élargissement des raies spectrales de molécules linéaires,” J. Quant. Spectrosc. Radiat. Transfer 14, 141 (1974).
[CrossRef]

C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par source laser. II. Etude expérimentale de l’élargissement des raies de la transition 0001-(1000,0200)I de CO2 perturbé par N2. Application de la théorie d’Anderson, Tsao et Curnutte au calcul des largeurs des raies de CO2 pur, et perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
[CrossRef]

Boulet, C.

C. Cousin, R. Le Doucen, J. P. Houdeau, C. Boulet, A. Henry, “Air Broadened Linewidths, Intensities, and Spectral Line Shapes for CO2 at 4.3 μm in the Region of the AMTS Instrument,” Appl. Opt. 25, 2434 (1986).
[CrossRef] [PubMed]

C. Cousin, R. Le Doucen, C. Boulet, A. Henry, D. Robert, “Temperature and Frequency Dependences of Absorption in the Microwindows of the 4.3 μm CO2 Band: a Consequence of Line Coupling,” J. Quant. Spectrosc. Radiat. Transfer 36, 521 (1986).
[CrossRef]

J. Bonamy, D. Robert, C. Boulet, “Simplified Models for the Temperature Dependence of Linewidths at Elevated Temperatures and Applications to CO Broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23 (1984).
[CrossRef]

C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par source laser. II. Etude expérimentale de l’élargissement des raies de la transition 0001-(1000,0200)I de CO2 perturbé par N2. Application de la théorie d’Anderson, Tsao et Curnutte au calcul des largeurs des raies de CO2 pur, et perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
[CrossRef]

Brodbeck, C.

J. P. Bouanich, C. Brodbeck, “Contribution des moments octupolaire et hexadécapolaire à l’élargissement des raies spectrales de molécules linéaires,” J. Quant. Spectrosc. Radiat. Transfer 14, 141 (1974).
[CrossRef]

Bulanin, M. O.

M. O. Bulanin, A. B. Dokuchaev, M. V. Tonkov, N. N. Filippov, “Influence of Line Interference on the Vibration-Rotation Band Shapes,” J. Quant. Spectrosc. Radiat. Transfer 31, 521 (1984).
[CrossRef]

M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the Parameters of the Vibrational-Rotational Lines in the 9.4 and 10.4 μm Bands of CO2 at Different Temperatures,” Opt. Spectrosc. 48, 403 (1980).

Bulychev, V. P.

M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the Parameters of the Vibrational-Rotational Lines in the 9.4 and 10.4 μm Bands of CO2 at Different Temperatures,” Opt. Spectrosc. 48, 403 (1980).

Burch, D. E.

Camy-Peyret, C.

J. M. Flaud, C. Camy-Peyret; private communication.

Conant, J. A.

L. S. Bernstein, D. C. Robertson, J. A. Conant, “Band-Model Parameters for the 4.3 μm CO2 Band from 200 to 3000°K—II: Prediction, Comparison to Experiment, and Application to Plume Emission-Absorption Calculations,” J. Quant. Spectrosc. Radiat. Transfer 23, 169 (1980).
[CrossRef]

Cousin, C.

C. Cousin, R. Le Doucen, C. Boulet, A. Henry, D. Robert, “Temperature and Frequency Dependences of Absorption in the Microwindows of the 4.3 μm CO2 Band: a Consequence of Line Coupling,” J. Quant. Spectrosc. Radiat. Transfer 36, 521 (1986).
[CrossRef]

C. Cousin, R. Le Doucen, J. P. Houdeau, C. Boulet, A. Henry, “Air Broadened Linewidths, Intensities, and Spectral Line Shapes for CO2 at 4.3 μm in the Region of the AMTS Instrument,” Appl. Opt. 25, 2434 (1986).
[CrossRef] [PubMed]

Curnutte, B.

C. J. Tsao, B. Curnutte, “Line-Widths of Pressure-Broadened Spectral Lines,” J. Quant. Spectrosc. Radiat. Transfer 2, 41 (1962).
[CrossRef]

Dahoo, P.

M. Margottin-Maclou, P. Dahoo, A. Henry, L. Henry, “Self-Broadening Parameters in the ν3 Band of 14N216O,” J. Mol. Spectrosc. 111, 275 (1985).
[CrossRef]

Dokuchaev, A. B.

M. O. Bulanin, A. B. Dokuchaev, M. V. Tonkov, N. N. Filippov, “Influence of Line Interference on the Vibration-Rotation Band Shapes,” J. Quant. Spectrosc. Radiat. Transfer 31, 521 (1984).
[CrossRef]

Filippov, N. N.

M. O. Bulanin, A. B. Dokuchaev, M. V. Tonkov, N. N. Filippov, “Influence of Line Interference on the Vibration-Rotation Band Shapes,” J. Quant. Spectrosc. Radiat. Transfer 31, 521 (1984).
[CrossRef]

Fisher, C. J.

H. S. Lowry, C. J. Fisher, “Line Parameter Measurements and Calculations of CO Broadened by Nitrogen at Elevated Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 27, 585 (1982).
[CrossRef]

Flaud, J. M.

J. M. Flaud, C. Camy-Peyret; private communication.

Godon, M.

A. Bauer, M. Godon, M. Kheddar, J. M. Hartmann, J. Bonamy, D. Robert, “Temperature and Perturber Dependences of Water Vapor 380 GHz-Line Broadening,” J. Quant. Spectrosc. Radiat. Transfer 37, 531 (1987).
[CrossRef]

Goody, R. M.

R. M. Goody, Atmospheric Radiation (Clarendon, Oxford, 1964), pp. 122–170.

Gray, C. G.

C. G. Gray, J. Van Kranendonk, “Calculation of the Pressure Broadening of Rotational Raman Lines due to Multipolar and Dispersion Interaction,” Can. J. Phys. 44, 2411 (1966).
[CrossRef]

Greenhalgh, D. A.

D. A. Greenhalgh, F. M. Porter, “A Polynomial Energy-Gap Model for Molecular Linewidths,” J. Quant. Spectrosc. Radiat. Transfer 34, 95 (1985).
[CrossRef]

Gryvnak, D. A.

Hall, R. J.

R. J. Hall, J. H. Stufflebeam, “Quantitative CARS Spectroscopy of CO2 and N2O,” Appl. Opt. 33, 4319 (1984).
[CrossRef]

R. J. Hall, “Coherent Anti-Stokes Raman Spectroscopic Modeling for Combustion Diagnostics,” Opt. Eng. 22, 322 (1983).
[CrossRef]

R. J. Hall, “Pressure-Broadened Linewidths for N2 Coherent Anti-Stokes Raman Spectroscopy Thermometry,” Appl. Spectrosc. 34, 700 (1980).
[CrossRef]

Hartmann, J. M.

J. M. Hartmann, “Calculation of Self-Broadening Coefficients for H2O Raman-Lines,” J. Mol. Spectrosc. 127, 35 (1988).
[CrossRef]

L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Collisional Broadening of CO2 IR lines. II: Calculations,” J. Chem. Phys. 88, 2999 (1988).
[CrossRef]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional Broadening of Rotation-Vibration Lines for Asymmetric-Top Molecules. III Self-Broadening Case; Application to H2O,” J. Chem. Phys. 87, 2781 (1987).
[CrossRef]

A. Bauer, M. Godon, M. Kheddar, J. M. Hartmann, J. Bonamy, D. Robert, “Temperature and Perturber Dependences of Water Vapor 380 GHz-Line Broadening,” J. Quant. Spectrosc. Radiat. Transfer 37, 531 (1987).
[CrossRef]

J. M. Hartmann, J. Taine, J. Bonamy, B. Labani, D. Robert, “Collisional Broadening of Rotation-Vibration Lines for Asymmetric-top Molecules. II H2O Diode Laser Measurements in the 400–900 K Range; Calculations in the 300–2000 K Range,” J. Chem. Phys. 86, 144 (1987).
[CrossRef]

J. M. Hartmann, M. Y. Perrin, J. Taine, L. Rosenmann, “Diode-Laser Measurements and Calculations of CO 1-0 P(4) Line Broadening in the 295 to 765 K Temperature Range,” J. Quant. Spectrosc. Radiat. Transfer 35, 357 (1986).
[CrossRef]

A. Soufiani, J. M. Hartmann, J. Taine, “Validity of Band-Model Calculations for CO2 and H2O Applied to Radiative Properties and Conductive-Radiative Transfer,” J. Quant. Spectrosc. Radiat. Transfer 33, 243 (1985).
[CrossRef]

J. M. Hartmann, R. Levi di Leon, J. Taine, “Line by Line and Narrow Band Statistical Model Calculations for H2O,” J. Quant. Spectrosc. Radiat. Transfer 32, 119 (1984).
[CrossRef]

J. M. Hartmann, L. Rosenmann, J. Taine, “Temperature and Pressure Dependences of the Absorption in the Narrow R66-R68 Window of the 12C16O2ν3 -Band,” J. Quant. Spectrosc. Radiat. Transfer, still unknown (1988) in press.

L. Rosenmann, M. Y. Perrin, J. M. Hartmann, J. Taine, “Diode Laser Measurements and Calculations of CO2 Line-Broadening by H2O from 416 to 805 K and by N2 from 296 to 803 K,” submitted to J. Quant. Spectrosc. Radiat. Transfer.

Henry, A.

C. Cousin, R. Le Doucen, J. P. Houdeau, C. Boulet, A. Henry, “Air Broadened Linewidths, Intensities, and Spectral Line Shapes for CO2 at 4.3 μm in the Region of the AMTS Instrument,” Appl. Opt. 25, 2434 (1986).
[CrossRef] [PubMed]

C. Cousin, R. Le Doucen, C. Boulet, A. Henry, D. Robert, “Temperature and Frequency Dependences of Absorption in the Microwindows of the 4.3 μm CO2 Band: a Consequence of Line Coupling,” J. Quant. Spectrosc. Radiat. Transfer 36, 521 (1986).
[CrossRef]

M. Margottin-Maclou, P. Dahoo, A. Henry, L. Henry, “Self-Broadening Parameters in the ν3 Band of 14N216O,” J. Mol. Spectrosc. 111, 275 (1985).
[CrossRef]

A. Henry, M. Margottin-Maclou, N. Lacome, “N2- and O2-Broadening Parameters in the ν3 band of 14N216O,” J. Mol. Spectrosc. 111, 291 (1985).
[CrossRef]

Henry, L.

M. Margottin-Maclou, P. Dahoo, A. Henry, L. Henry, “Self-Broadening Parameters in the ν3 Band of 14N216O,” J. Mol. Spectrosc. 111, 275 (1985).
[CrossRef]

Herpin, M. C.

M. C. Herpin, P. Lallemand, “Study of the Broadening of the Rotational Raman Lines of CO2 Perturbed by Rare Gases,” J. Quant. Spectrosc. Radiat. Transfer 15, 779 (1975).
[CrossRef]

Houdeau, J. P.

Jammu, K. S.

K. S. Jammu, G. E. St. John, H. L. Welsh, “Pressure Broadening of the Rotational Raman Lines of Some Simple Gases,” Can. J. Phys. 44, 797 (1966).
[CrossRef]

John, G. E. St.

K. S. Jammu, G. E. St. John, H. L. Welsh, “Pressure Broadening of the Rotational Raman Lines of Some Simple Gases,” Can. J. Phys. 44, 797 (1966).
[CrossRef]

Kheddar, M.

A. Bauer, M. Godon, M. Kheddar, J. M. Hartmann, J. Bonamy, D. Robert, “Temperature and Perturber Dependences of Water Vapor 380 GHz-Line Broadening,” J. Quant. Spectrosc. Radiat. Transfer 37, 531 (1987).
[CrossRef]

Khodos, E. B.

M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the Parameters of the Vibrational-Rotational Lines in the 9.4 and 10.4 μm Bands of CO2 at Different Temperatures,” Opt. Spectrosc. 48, 403 (1980).

Labani, B.

J. M. Hartmann, J. Taine, J. Bonamy, B. Labani, D. Robert, “Collisional Broadening of Rotation-Vibration Lines for Asymmetric-top Molecules. II H2O Diode Laser Measurements in the 400–900 K Range; Calculations in the 300–2000 K Range,” J. Chem. Phys. 86, 144 (1987).
[CrossRef]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional Broadening of Rotation-Vibration Lines for Asymmetric-Top Molecules. III Self-Broadening Case; Application to H2O,” J. Chem. Phys. 87, 2781 (1987).
[CrossRef]

Lacome, N.

E. Arié, N. Lacome, P. Arcas, A. Levy, “Oxygen- and Air-Broadened Linewidths of CO2,” Appl. Opt. 25, 2584 (1986).
[CrossRef] [PubMed]

A. Henry, M. Margottin-Maclou, N. Lacome, “N2- and O2-Broadening Parameters in the ν3 band of 14N216O,” J. Mol. Spectrosc. 111, 291 (1985).
[CrossRef]

C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par source laser. II. Etude expérimentale de l’élargissement des raies de la transition 0001-(1000,0200)I de CO2 perturbé par N2. Application de la théorie d’Anderson, Tsao et Curnutte au calcul des largeurs des raies de CO2 pur, et perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
[CrossRef]

Lallemand, P.

M. C. Herpin, P. Lallemand, “Study of the Broadening of the Rotational Raman Lines of CO2 Perturbed by Rare Gases,” J. Quant. Spectrosc. Radiat. Transfer 15, 779 (1975).
[CrossRef]

Lavorel, B.

B. Lavorel et al., “Rotational Collisional Line-Broadening at High Temperatures in the N2 Fundamental Q-Branch Studied with Stimulated Raman Spectroscopy,” J. Phys. 47, 417 (1986).
[CrossRef]

Le Doucen, R.

C. Cousin, R. Le Doucen, C. Boulet, A. Henry, D. Robert, “Temperature and Frequency Dependences of Absorption in the Microwindows of the 4.3 μm CO2 Band: a Consequence of Line Coupling,” J. Quant. Spectrosc. Radiat. Transfer 36, 521 (1986).
[CrossRef]

C. Cousin, R. Le Doucen, J. P. Houdeau, C. Boulet, A. Henry, “Air Broadened Linewidths, Intensities, and Spectral Line Shapes for CO2 at 4.3 μm in the Region of the AMTS Instrument,” Appl. Opt. 25, 2434 (1986).
[CrossRef] [PubMed]

Levi di Leon, R.

R. Levi di Leon, J. Taine, “Infrared Absorption by Gas Mixtures in the 300–850 K Temperature Range I—4.3 μm and 2.7 μm CO2 Spectra,” J. Quant. Spectrosc. Radiat. Transfer 35, 337 (1986).
[CrossRef]

J. M. Hartmann, R. Levi di Leon, J. Taine, “Line by Line and Narrow Band Statistical Model Calculations for H2O,” J. Quant. Spectrosc. Radiat. Transfer 32, 119 (1984).
[CrossRef]

Levy, A.

Lowry, H. S.

H. S. Lowry, C. J. Fisher, “Line Parameter Measurements and Calculations of CO Broadened by Nitrogen at Elevated Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 27, 585 (1982).
[CrossRef]

Malkmus, W.

Margottin-Maclou, M.

A. Henry, M. Margottin-Maclou, N. Lacome, “N2- and O2-Broadening Parameters in the ν3 band of 14N216O,” J. Mol. Spectrosc. 111, 291 (1985).
[CrossRef]

M. Margottin-Maclou, P. Dahoo, A. Henry, L. Henry, “Self-Broadening Parameters in the ν3 Band of 14N216O,” J. Mol. Spectrosc. 111, 275 (1985).
[CrossRef]

Ouazzany, Y.

Y. Ouazzany, J. P. Boquillon, H. W. Schrötter, “High Resolution CARS Spectrum and Analysis of the ν1-Band Q Branch of Carbon Dioxyde,” submitted to Mol. Phys.

Papineau, N.

N. Papineau, “Signature infrarouge de flammes; données spectrales du gaz carbonique a température élevée,” Rech. Aerosp. 3, 31 (1987).

N. Papineau, M. Pealat, “Numerical Simulation of the Coherent Anti-Stokes Raman Scattering Spectrum of CO2,” J. Chem. Phys. 79, 5758 (1983); “CARS Spectrum of High Temperature CO2: Analysis and Simulation,” Appl. Opt. 24, 3002 (1985).
[CrossRef] [PubMed]

Patty, R. R.

Pealat, M.

N. Papineau, M. Pealat, “Numerical Simulation of the Coherent Anti-Stokes Raman Scattering Spectrum of CO2,” J. Chem. Phys. 79, 5758 (1983); “CARS Spectrum of High Temperature CO2: Analysis and Simulation,” Appl. Opt. 24, 3002 (1985).
[CrossRef] [PubMed]

Perrin, M. Y.

L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Collisional Broadening of CO2 IR lines. II: Calculations,” J. Chem. Phys. 88, 2999 (1988).
[CrossRef]

L. Rosenmann, M. Y. Perrin, J. Taine, “Collisional Broadening of CO2 IR Lines. I. Diode Laser Measurements for CO2-N2 Mixtures in the 295–815 K Temperature Range,” J. Chem. Phys. 88, 2995 (1988).
[CrossRef]

J. M. Hartmann, M. Y. Perrin, J. Taine, L. Rosenmann, “Diode-Laser Measurements and Calculations of CO 1-0 P(4) Line Broadening in the 295 to 765 K Temperature Range,” J. Quant. Spectrosc. Radiat. Transfer 35, 357 (1986).
[CrossRef]

L. Rosenmann, M. Y. Perrin, J. M. Hartmann, J. Taine, “Diode Laser Measurements and Calculations of CO2 Line-Broadening by H2O from 416 to 805 K and by N2 from 296 to 803 K,” submitted to J. Quant. Spectrosc. Radiat. Transfer.

Porter, F. M.

D. A. Greenhalgh, F. M. Porter, “A Polynomial Energy-Gap Model for Molecular Linewidths,” J. Quant. Spectrosc. Radiat. Transfer 34, 95 (1985).
[CrossRef]

Robert, D.

A. Bauer, M. Godon, M. Kheddar, J. M. Hartmann, J. Bonamy, D. Robert, “Temperature and Perturber Dependences of Water Vapor 380 GHz-Line Broadening,” J. Quant. Spectrosc. Radiat. Transfer 37, 531 (1987).
[CrossRef]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional Broadening of Rotation-Vibration Lines for Asymmetric-Top Molecules. III Self-Broadening Case; Application to H2O,” J. Chem. Phys. 87, 2781 (1987).
[CrossRef]

J. M. Hartmann, J. Taine, J. Bonamy, B. Labani, D. Robert, “Collisional Broadening of Rotation-Vibration Lines for Asymmetric-top Molecules. II H2O Diode Laser Measurements in the 400–900 K Range; Calculations in the 300–2000 K Range,” J. Chem. Phys. 86, 144 (1987).
[CrossRef]

C. Cousin, R. Le Doucen, C. Boulet, A. Henry, D. Robert, “Temperature and Frequency Dependences of Absorption in the Microwindows of the 4.3 μm CO2 Band: a Consequence of Line Coupling,” J. Quant. Spectrosc. Radiat. Transfer 36, 521 (1986).
[CrossRef]

J. Bonamy, D. Robert, C. Boulet, “Simplified Models for the Temperature Dependence of Linewidths at Elevated Temperatures and Applications to CO Broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23 (1984).
[CrossRef]

D. Robert, J. Bonamy, “Short Range Force Effects in Semi-classical Molecular Line Broadening Calculations,” J. Phys. Paris 40, 923 (1979).

J. Bonamy, D. Robert, “Atom-Atom Potential in Rotational Line Broadening for Molecular Gases: Application to CO Lines Broadened by CO, N2, O2 and NO,” J. Quant. Spectrosc. Radiat. Transfer 16, 185 (1976).
[CrossRef]

Robertson, D. C.

L. S. Bernstein, D. C. Robertson, J. A. Conant, “Band-Model Parameters for the 4.3 μm CO2 Band from 200 to 3000°K—II: Prediction, Comparison to Experiment, and Application to Plume Emission-Absorption Calculations,” J. Quant. Spectrosc. Radiat. Transfer 23, 169 (1980).
[CrossRef]

Rosenmann, L.

L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Collisional Broadening of CO2 IR lines. II: Calculations,” J. Chem. Phys. 88, 2999 (1988).
[CrossRef]

L. Rosenmann, M. Y. Perrin, J. Taine, “Collisional Broadening of CO2 IR Lines. I. Diode Laser Measurements for CO2-N2 Mixtures in the 295–815 K Temperature Range,” J. Chem. Phys. 88, 2995 (1988).
[CrossRef]

J. M. Hartmann, M. Y. Perrin, J. Taine, L. Rosenmann, “Diode-Laser Measurements and Calculations of CO 1-0 P(4) Line Broadening in the 295 to 765 K Temperature Range,” J. Quant. Spectrosc. Radiat. Transfer 35, 357 (1986).
[CrossRef]

L. Rosenmann, M. Y. Perrin, J. M. Hartmann, J. Taine, “Diode Laser Measurements and Calculations of CO2 Line-Broadening by H2O from 416 to 805 K and by N2 from 296 to 803 K,” submitted to J. Quant. Spectrosc. Radiat. Transfer.

A. Soufiani, L. Rosenmann, “Diode-Laser Measurements and Calculations of CO-CO2 Line-Widths at High Temperature,” in press. J. Quant. Spectrosc. Radiat. Transfer.

J. M. Hartmann, L. Rosenmann, J. Taine, “Temperature and Pressure Dependences of the Absorption in the Narrow R66-R68 Window of the 12C16O2ν3 -Band,” J. Quant. Spectrosc. Radiat. Transfer, still unknown (1988) in press.

Schrötter, H. W.

Y. Ouazzany, J. P. Boquillon, H. W. Schrötter, “High Resolution CARS Spectrum and Analysis of the ν1-Band Q Branch of Carbon Dioxyde,” submitted to Mol. Phys.

Soufiani, A.

A. Soufiani, J. Taine, “Application of Statistical Narrow-band Model to Coupled Radiation and Convection at High Temperature,” Int. J. Heat Mass Transfer 30, 437 (1987).
[CrossRef]

A. Soufiani, J. M. Hartmann, J. Taine, “Validity of Band-Model Calculations for CO2 and H2O Applied to Radiative Properties and Conductive-Radiative Transfer,” J. Quant. Spectrosc. Radiat. Transfer 33, 243 (1985).
[CrossRef]

A. Soufiani, L. Rosenmann, “Diode-Laser Measurements and Calculations of CO-CO2 Line-Widths at High Temperature,” in press. J. Quant. Spectrosc. Radiat. Transfer.

Srivastava, R. P.

R. P. Srivastava, H. R. Zaidi, “Self-Broadened Widths of Rotational Raman and Infrared Lines in CO2,” Can. J. Phys. 55, 549 (1977).
[CrossRef]

Stufflebeam, J. H.

R. J. Hall, J. H. Stufflebeam, “Quantitative CARS Spectroscopy of CO2 and N2O,” Appl. Opt. 33, 4319 (1984).
[CrossRef]

Taine, J.

L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Collisional Broadening of CO2 IR lines. II: Calculations,” J. Chem. Phys. 88, 2999 (1988).
[CrossRef]

L. Rosenmann, M. Y. Perrin, J. Taine, “Collisional Broadening of CO2 IR Lines. I. Diode Laser Measurements for CO2-N2 Mixtures in the 295–815 K Temperature Range,” J. Chem. Phys. 88, 2995 (1988).
[CrossRef]

J. M. Hartmann, J. Taine, J. Bonamy, B. Labani, D. Robert, “Collisional Broadening of Rotation-Vibration Lines for Asymmetric-top Molecules. II H2O Diode Laser Measurements in the 400–900 K Range; Calculations in the 300–2000 K Range,” J. Chem. Phys. 86, 144 (1987).
[CrossRef]

A. Soufiani, J. Taine, “Application of Statistical Narrow-band Model to Coupled Radiation and Convection at High Temperature,” Int. J. Heat Mass Transfer 30, 437 (1987).
[CrossRef]

R. Levi di Leon, J. Taine, “Infrared Absorption by Gas Mixtures in the 300–850 K Temperature Range I—4.3 μm and 2.7 μm CO2 Spectra,” J. Quant. Spectrosc. Radiat. Transfer 35, 337 (1986).
[CrossRef]

J. M. Hartmann, M. Y. Perrin, J. Taine, L. Rosenmann, “Diode-Laser Measurements and Calculations of CO 1-0 P(4) Line Broadening in the 295 to 765 K Temperature Range,” J. Quant. Spectrosc. Radiat. Transfer 35, 357 (1986).
[CrossRef]

A. Soufiani, J. M. Hartmann, J. Taine, “Validity of Band-Model Calculations for CO2 and H2O Applied to Radiative Properties and Conductive-Radiative Transfer,” J. Quant. Spectrosc. Radiat. Transfer 33, 243 (1985).
[CrossRef]

J. M. Hartmann, R. Levi di Leon, J. Taine, “Line by Line and Narrow Band Statistical Model Calculations for H2O,” J. Quant. Spectrosc. Radiat. Transfer 32, 119 (1984).
[CrossRef]

J. Taine, “A Line-by-Line Calculation of Low-Resolution Radiative Properties of CO2-CO-Transparent Nonisothermal Gases Mixtures up to 3000 K,” J. Quant. Spectrosc. Radiat. Transfer 30, 371 (1983).
[CrossRef]

J. M. Hartmann, L. Rosenmann, J. Taine, “Temperature and Pressure Dependences of the Absorption in the Narrow R66-R68 Window of the 12C16O2ν3 -Band,” J. Quant. Spectrosc. Radiat. Transfer, still unknown (1988) in press.

L. Rosenmann, M. Y. Perrin, J. M. Hartmann, J. Taine, “Diode Laser Measurements and Calculations of CO2 Line-Broadening by H2O from 416 to 805 K and by N2 from 296 to 803 K,” submitted to J. Quant. Spectrosc. Radiat. Transfer.

Tanaka, M.

G. Yamamoto, M. Tanaka, T. Aoki, “Estimation of Rotational Line Widths of Carbon Dioxide Bands,” J. Quant. Spectrosc. Radiat. Transfer 9, 371 (1969).
[CrossRef]

Tonkov, M. V.

M. O. Bulanin, A. B. Dokuchaev, M. V. Tonkov, N. N. Filippov, “Influence of Line Interference on the Vibration-Rotation Band Shapes,” J. Quant. Spectrosc. Radiat. Transfer 31, 521 (1984).
[CrossRef]

Tsao, C. J.

C. J. Tsao, B. Curnutte, “Line-Widths of Pressure-Broadened Spectral Lines,” J. Quant. Spectrosc. Radiat. Transfer 2, 41 (1962).
[CrossRef]

Van Kranendonk, J.

C. G. Gray, J. Van Kranendonk, “Calculation of the Pressure Broadening of Rotational Raman Lines due to Multipolar and Dispersion Interaction,” Can. J. Phys. 44, 2411 (1966).
[CrossRef]

Welsh, H. L.

K. S. Jammu, G. E. St. John, H. L. Welsh, “Pressure Broadening of the Rotational Raman Lines of Some Simple Gases,” Can. J. Phys. 44, 797 (1966).
[CrossRef]

Yamamoto, G.

G. Yamamoto, M. Tanaka, T. Aoki, “Estimation of Rotational Line Widths of Carbon Dioxide Bands,” J. Quant. Spectrosc. Radiat. Transfer 9, 371 (1969).
[CrossRef]

Young, S. J.

S. J. Young, “Nonisothermal Band Model Theory,” J. Quant. Spectrosc. Radiat. Transfer 18, 1 (1977); “Evaluation of Noniso-thermal Band Models for H2O,” J. Quant. Spectrosc. Radiat. Transfer 18, 29 (1977).
[CrossRef]

Zaidi, H. R.

R. P. Srivastava, H. R. Zaidi, “Self-Broadened Widths of Rotational Raman and Infrared Lines in CO2,” Can. J. Phys. 55, 549 (1977).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

Can. J. Phys.

C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par source laser. II. Etude expérimentale de l’élargissement des raies de la transition 0001-(1000,0200)I de CO2 perturbé par N2. Application de la théorie d’Anderson, Tsao et Curnutte au calcul des largeurs des raies de CO2 pur, et perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
[CrossRef]

K. S. Jammu, G. E. St. John, H. L. Welsh, “Pressure Broadening of the Rotational Raman Lines of Some Simple Gases,” Can. J. Phys. 44, 797 (1966).
[CrossRef]

C. G. Gray, J. Van Kranendonk, “Calculation of the Pressure Broadening of Rotational Raman Lines due to Multipolar and Dispersion Interaction,” Can. J. Phys. 44, 2411 (1966).
[CrossRef]

R. P. Srivastava, H. R. Zaidi, “Self-Broadened Widths of Rotational Raman and Infrared Lines in CO2,” Can. J. Phys. 55, 549 (1977).
[CrossRef]

Int. J. Heat Mass Transfer

A. Soufiani, J. Taine, “Application of Statistical Narrow-band Model to Coupled Radiation and Convection at High Temperature,” Int. J. Heat Mass Transfer 30, 437 (1987).
[CrossRef]

J. Chem. Phys.

N. Papineau, M. Pealat, “Numerical Simulation of the Coherent Anti-Stokes Raman Scattering Spectrum of CO2,” J. Chem. Phys. 79, 5758 (1983); “CARS Spectrum of High Temperature CO2: Analysis and Simulation,” Appl. Opt. 24, 3002 (1985).
[CrossRef] [PubMed]

L. Rosenmann, M. Y. Perrin, J. Taine, “Collisional Broadening of CO2 IR Lines. I. Diode Laser Measurements for CO2-N2 Mixtures in the 295–815 K Temperature Range,” J. Chem. Phys. 88, 2995 (1988).
[CrossRef]

L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Collisional Broadening of CO2 IR lines. II: Calculations,” J. Chem. Phys. 88, 2999 (1988).
[CrossRef]

J. M. Hartmann, J. Taine, J. Bonamy, B. Labani, D. Robert, “Collisional Broadening of Rotation-Vibration Lines for Asymmetric-top Molecules. II H2O Diode Laser Measurements in the 400–900 K Range; Calculations in the 300–2000 K Range,” J. Chem. Phys. 86, 144 (1987).
[CrossRef]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional Broadening of Rotation-Vibration Lines for Asymmetric-Top Molecules. III Self-Broadening Case; Application to H2O,” J. Chem. Phys. 87, 2781 (1987).
[CrossRef]

J. Mol. Spectrosc.

M. Margottin-Maclou, P. Dahoo, A. Henry, L. Henry, “Self-Broadening Parameters in the ν3 Band of 14N216O,” J. Mol. Spectrosc. 111, 275 (1985).
[CrossRef]

J. M. Hartmann, “Calculation of Self-Broadening Coefficients for H2O Raman-Lines,” J. Mol. Spectrosc. 127, 35 (1988).
[CrossRef]

A. Henry, M. Margottin-Maclou, N. Lacome, “N2- and O2-Broadening Parameters in the ν3 band of 14N216O,” J. Mol. Spectrosc. 111, 291 (1985).
[CrossRef]

J. Opt. Soc. Am.

J. Phys.

B. Lavorel et al., “Rotational Collisional Line-Broadening at High Temperatures in the N2 Fundamental Q-Branch Studied with Stimulated Raman Spectroscopy,” J. Phys. 47, 417 (1986).
[CrossRef]

J. Phys. Paris

D. Robert, J. Bonamy, “Short Range Force Effects in Semi-classical Molecular Line Broadening Calculations,” J. Phys. Paris 40, 923 (1979).

J. Quant. Spectrosc. Radiat. Transfer

M. C. Herpin, P. Lallemand, “Study of the Broadening of the Rotational Raman Lines of CO2 Perturbed by Rare Gases,” J. Quant. Spectrosc. Radiat. Transfer 15, 779 (1975).
[CrossRef]

G. Yamamoto, M. Tanaka, T. Aoki, “Estimation of Rotational Line Widths of Carbon Dioxide Bands,” J. Quant. Spectrosc. Radiat. Transfer 9, 371 (1969).
[CrossRef]

J. P. Bouanich, C. Brodbeck, “Contribution des moments octupolaire et hexadécapolaire à l’élargissement des raies spectrales de molécules linéaires,” J. Quant. Spectrosc. Radiat. Transfer 14, 141 (1974).
[CrossRef]

C. Cousin, R. Le Doucen, C. Boulet, A. Henry, D. Robert, “Temperature and Frequency Dependences of Absorption in the Microwindows of the 4.3 μm CO2 Band: a Consequence of Line Coupling,” J. Quant. Spectrosc. Radiat. Transfer 36, 521 (1986).
[CrossRef]

M. O. Bulanin, A. B. Dokuchaev, M. V. Tonkov, N. N. Filippov, “Influence of Line Interference on the Vibration-Rotation Band Shapes,” J. Quant. Spectrosc. Radiat. Transfer 31, 521 (1984).
[CrossRef]

S. J. Young, “Nonisothermal Band Model Theory,” J. Quant. Spectrosc. Radiat. Transfer 18, 1 (1977); “Evaluation of Noniso-thermal Band Models for H2O,” J. Quant. Spectrosc. Radiat. Transfer 18, 29 (1977).
[CrossRef]

L. S. Bernstein, D. C. Robertson, J. A. Conant, “Band-Model Parameters for the 4.3 μm CO2 Band from 200 to 3000°K—II: Prediction, Comparison to Experiment, and Application to Plume Emission-Absorption Calculations,” J. Quant. Spectrosc. Radiat. Transfer 23, 169 (1980).
[CrossRef]

A. Soufiani, J. M. Hartmann, J. Taine, “Validity of Band-Model Calculations for CO2 and H2O Applied to Radiative Properties and Conductive-Radiative Transfer,” J. Quant. Spectrosc. Radiat. Transfer 33, 243 (1985).
[CrossRef]

L. S. Bernstein, “Band Model Parameters for the Parallel Bands of Linear Triatomic Molecules. I: Theory,” J. Quant. Spectrosc. Radiat. Transfer 23, 157 (1980).
[CrossRef]

J. Taine, “A Line-by-Line Calculation of Low-Resolution Radiative Properties of CO2-CO-Transparent Nonisothermal Gases Mixtures up to 3000 K,” J. Quant. Spectrosc. Radiat. Transfer 30, 371 (1983).
[CrossRef]

J. M. Hartmann, R. Levi di Leon, J. Taine, “Line by Line and Narrow Band Statistical Model Calculations for H2O,” J. Quant. Spectrosc. Radiat. Transfer 32, 119 (1984).
[CrossRef]

R. Levi di Leon, J. Taine, “Infrared Absorption by Gas Mixtures in the 300–850 K Temperature Range I—4.3 μm and 2.7 μm CO2 Spectra,” J. Quant. Spectrosc. Radiat. Transfer 35, 337 (1986).
[CrossRef]

J. Bonamy, D. Robert, C. Boulet, “Simplified Models for the Temperature Dependence of Linewidths at Elevated Temperatures and Applications to CO Broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23 (1984).
[CrossRef]

H. S. Lowry, C. J. Fisher, “Line Parameter Measurements and Calculations of CO Broadened by Nitrogen at Elevated Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 27, 585 (1982).
[CrossRef]

D. A. Greenhalgh, F. M. Porter, “A Polynomial Energy-Gap Model for Molecular Linewidths,” J. Quant. Spectrosc. Radiat. Transfer 34, 95 (1985).
[CrossRef]

J. M. Hartmann, M. Y. Perrin, J. Taine, L. Rosenmann, “Diode-Laser Measurements and Calculations of CO 1-0 P(4) Line Broadening in the 295 to 765 K Temperature Range,” J. Quant. Spectrosc. Radiat. Transfer 35, 357 (1986).
[CrossRef]

C. J. Tsao, B. Curnutte, “Line-Widths of Pressure-Broadened Spectral Lines,” J. Quant. Spectrosc. Radiat. Transfer 2, 41 (1962).
[CrossRef]

J. Bonamy, D. Robert, “Atom-Atom Potential in Rotational Line Broadening for Molecular Gases: Application to CO Lines Broadened by CO, N2, O2 and NO,” J. Quant. Spectrosc. Radiat. Transfer 16, 185 (1976).
[CrossRef]

A. Bauer, M. Godon, M. Kheddar, J. M. Hartmann, J. Bonamy, D. Robert, “Temperature and Perturber Dependences of Water Vapor 380 GHz-Line Broadening,” J. Quant. Spectrosc. Radiat. Transfer 37, 531 (1987).
[CrossRef]

Opt. Eng.

R. J. Hall, “Coherent Anti-Stokes Raman Spectroscopic Modeling for Combustion Diagnostics,” Opt. Eng. 22, 322 (1983).
[CrossRef]

Opt. Spectrosc.

M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the Parameters of the Vibrational-Rotational Lines in the 9.4 and 10.4 μm Bands of CO2 at Different Temperatures,” Opt. Spectrosc. 48, 403 (1980).

Phys. Rev.

P. W. Anderson, “Pressure Broadening in the Microwave and Infrared Regions,” Phys. Rev. 76, 647 (1949).
[CrossRef]

Rech. Aerosp.

N. Papineau, “Signature infrarouge de flammes; données spectrales du gaz carbonique a température élevée,” Rech. Aerosp. 3, 31 (1987).

Other

R. M. Goody, Atmospheric Radiation (Clarendon, Oxford, 1964), pp. 122–170.

L. Rosenmann, M. Y. Perrin, J. M. Hartmann, J. Taine, “Diode Laser Measurements and Calculations of CO2 Line-Broadening by H2O from 416 to 805 K and by N2 from 296 to 803 K,” submitted to J. Quant. Spectrosc. Radiat. Transfer.

Y. Ouazzany, J. P. Boquillon, H. W. Schrötter, “High Resolution CARS Spectrum and Analysis of the ν1-Band Q Branch of Carbon Dioxyde,” submitted to Mol. Phys.

J. M. Hartmann, L. Rosenmann, J. Taine, “Temperature and Pressure Dependences of the Absorption in the Narrow R66-R68 Window of the 12C16O2ν3 -Band,” J. Quant. Spectrosc. Radiat. Transfer, still unknown (1988) in press.

A. Soufiani, L. Rosenmann, “Diode-Laser Measurements and Calculations of CO-CO2 Line-Widths at High Temperature,” in press. J. Quant. Spectrosc. Radiat. Transfer.

J. M. Flaud, C. Camy-Peyret; private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Broadening coefficients at 300 K: —, from Table II; - - -, polynomial correlations [Eq. (2) and Table III]; (a) broadening by H2O and CO2; (b) broadening by N2 and O2.

Fig. 2
Fig. 2

Temperature coefficients: —, from Table II; - - -, polynomial correlations [Eq. (2) and Table III]; (a) broadening by H2O and CO2; (b) broadening by N2 and O2.

Fig. 3
Fig. 3

Dependences of the |m| = 1. 51, 101 self-broadened CO2 coefficients on temperature: ○, calculated values; —, from Eq. (1) and Table II; - - -, from Eqs. (1), (2) and Table III.

Fig. 4
Fig. 4

Calculated broadening coefficients at 2400 K.

Tables (5)

Tables Icon

Table I Comparisons Between the Broadening (in 10−3 cm−1 atm−1) of Various Infrared and Raman CO2 Linesa

Tables Icon

Table II Broadening and Temperature Coefficients γ|m| (300 K) (in 10−3 cm−1 atm−1) and N|m| [see Eq.(1)] of CO2 Lines Broadened by CO2, H2O, N2, and O2

Tables Icon

Table III Parameters γ*|m| (300 K) (in 10−3 cm−1 atm−1) and N*|m| of the Polynomial Correlations[see Eq. (2)]

Tables Icon

Table IV Parameters of the Constant Broadening Coefficient Approximation [see Eq. (4)]

Tables Icon

Table V Calculated Broadening Coefficients for High |m| Values (In 10−3 cm−1 atm−1)a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

γ m ( T ) = γ m ( 300 K ) [ 300 / T ] N m .
γ m ( T ) ( CO 2 - mixture ) = x x X · γ m ( T ) ( CO 2 - X ) ,
γ m * ( 300 K ) = a 2 m 2 + a 1 m + a 0 , 1 m 101 N m * = b 2 m 2 + b 1 m + b 0 .
γ ¯ ( T ) = m ρ m ( T ) γ m ( T ) ,
γ ¯ ( T ) = γ ¯ ( 300 K ) [ 300 / T ] N ¯ ( T ) ;             N ¯ ( T ) = N ¯ ( 300 K ) [ 300 / T ] α .

Metrics