Abstract

Anomalies are reported in total and diffuse reflectance values obtained from measurements on structured samples with a double-beam integrating sphere. It is demonstrated that these anomalies are caused by an interplay between the sample structure and geometric sphere imperfections. The sample structure causes a confinement of the diffuse reflectance which may suffer port losses as well as erroneously high signal levels. This can lead to deviations in the recorded reflectance values as high as 50%.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Commercially available, e.g., from Carl Zeiss Co., Wurttemberg, FRG, or Eastman Kodak Co., Rochester, NY.
  2. W. R. Weidner, J. J. Hsia, “Reflection Properties of Pressed Polytetrafluorethylene Powder,” J. Opt. Soc. Am. 71, 856 (1981).
    [CrossRef]
  3. F. J. J. Clarke, J. A. Compton, “Correction Methods for Integrating Sphere Measurement of Hemispherical Reflectance,” Color Res. Appl. 11, 253 (1986).
    [CrossRef]
  4. D. G. Goebel, “Generalized Integrating Sphere Theory,” Appl. Opt. 6, 125 (1967).
    [CrossRef] [PubMed]
  5. M. W. Finkel, “Integrating Sphere Theory,” Opt. Commun. 2, 25 (1970).
    [CrossRef]
  6. G. A. Zerlaut, T. E. Anderson, “Multiple-Integrating Sphere Spectrophotometer for Measuring Absolute Spectral Reflectance and Transmittance,” Appl. Opt. 20, 3797 (1981).
    [CrossRef] [PubMed]
  7. J. Fendley, “An Analysis of the Measuring Procedure for the Integrating Sphere Spectrophotometer,” Sol. Energy 35, 281 (1985).
    [CrossRef]
  8. O. H. Olson, D. A. Pontarelli, “Asymmetry of an Integrating Sphere,” Appl. Opt. 2, 631 (1963).
    [CrossRef]
  9. For example, B. H. Billings, in American Institute of Physics HandbookD. E. Gray, Ed. (McGraw-Hill, New York, 1972), Chap. 6; Table 6g—1 and 2 give reflectance values above 95% for evaporated Cu films.
  10. A. Roos, T. Chibuye, B. Karlsson, “Properties of Oxidized Copper Surfaces for Solar Applications I,” Sol. Energy Mat. 7, 453 (1983).
    [CrossRef]
  11. D. J. Lovell, Integrating Sphere Performance (Labsphere, North Sutton, NH, 1981).
  12. Trade name of Sunstrip Viking, Skäggebyvägen 29, S-612 00 Finspång, Sweden.
  13. A. T. Mecherikunnel, J. C. Richmond, in Seminar on Testing Solar Energy Materials and Systems (Institute of Environmental Science, Mt. Prospect, IL, 1978), p. 83.

1986 (1)

F. J. J. Clarke, J. A. Compton, “Correction Methods for Integrating Sphere Measurement of Hemispherical Reflectance,” Color Res. Appl. 11, 253 (1986).
[CrossRef]

1985 (1)

J. Fendley, “An Analysis of the Measuring Procedure for the Integrating Sphere Spectrophotometer,” Sol. Energy 35, 281 (1985).
[CrossRef]

1983 (1)

A. Roos, T. Chibuye, B. Karlsson, “Properties of Oxidized Copper Surfaces for Solar Applications I,” Sol. Energy Mat. 7, 453 (1983).
[CrossRef]

1981 (2)

1970 (1)

M. W. Finkel, “Integrating Sphere Theory,” Opt. Commun. 2, 25 (1970).
[CrossRef]

1967 (1)

1963 (1)

Anderson, T. E.

Billings, B. H.

For example, B. H. Billings, in American Institute of Physics HandbookD. E. Gray, Ed. (McGraw-Hill, New York, 1972), Chap. 6; Table 6g—1 and 2 give reflectance values above 95% for evaporated Cu films.

Chibuye, T.

A. Roos, T. Chibuye, B. Karlsson, “Properties of Oxidized Copper Surfaces for Solar Applications I,” Sol. Energy Mat. 7, 453 (1983).
[CrossRef]

Clarke, F. J. J.

F. J. J. Clarke, J. A. Compton, “Correction Methods for Integrating Sphere Measurement of Hemispherical Reflectance,” Color Res. Appl. 11, 253 (1986).
[CrossRef]

Compton, J. A.

F. J. J. Clarke, J. A. Compton, “Correction Methods for Integrating Sphere Measurement of Hemispherical Reflectance,” Color Res. Appl. 11, 253 (1986).
[CrossRef]

Fendley, J.

J. Fendley, “An Analysis of the Measuring Procedure for the Integrating Sphere Spectrophotometer,” Sol. Energy 35, 281 (1985).
[CrossRef]

Finkel, M. W.

M. W. Finkel, “Integrating Sphere Theory,” Opt. Commun. 2, 25 (1970).
[CrossRef]

Goebel, D. G.

Hsia, J. J.

Karlsson, B.

A. Roos, T. Chibuye, B. Karlsson, “Properties of Oxidized Copper Surfaces for Solar Applications I,” Sol. Energy Mat. 7, 453 (1983).
[CrossRef]

Lovell, D. J.

D. J. Lovell, Integrating Sphere Performance (Labsphere, North Sutton, NH, 1981).

Mecherikunnel, A. T.

A. T. Mecherikunnel, J. C. Richmond, in Seminar on Testing Solar Energy Materials and Systems (Institute of Environmental Science, Mt. Prospect, IL, 1978), p. 83.

Olson, O. H.

Pontarelli, D. A.

Richmond, J. C.

A. T. Mecherikunnel, J. C. Richmond, in Seminar on Testing Solar Energy Materials and Systems (Institute of Environmental Science, Mt. Prospect, IL, 1978), p. 83.

Roos, A.

A. Roos, T. Chibuye, B. Karlsson, “Properties of Oxidized Copper Surfaces for Solar Applications I,” Sol. Energy Mat. 7, 453 (1983).
[CrossRef]

Weidner, W. R.

Zerlaut, G. A.

Appl. Opt. (3)

Color Res. Appl. (1)

F. J. J. Clarke, J. A. Compton, “Correction Methods for Integrating Sphere Measurement of Hemispherical Reflectance,” Color Res. Appl. 11, 253 (1986).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

M. W. Finkel, “Integrating Sphere Theory,” Opt. Commun. 2, 25 (1970).
[CrossRef]

Sol. Energy (1)

J. Fendley, “An Analysis of the Measuring Procedure for the Integrating Sphere Spectrophotometer,” Sol. Energy 35, 281 (1985).
[CrossRef]

Sol. Energy Mat. (1)

A. Roos, T. Chibuye, B. Karlsson, “Properties of Oxidized Copper Surfaces for Solar Applications I,” Sol. Energy Mat. 7, 453 (1983).
[CrossRef]

Other (5)

D. J. Lovell, Integrating Sphere Performance (Labsphere, North Sutton, NH, 1981).

Trade name of Sunstrip Viking, Skäggebyvägen 29, S-612 00 Finspång, Sweden.

A. T. Mecherikunnel, J. C. Richmond, in Seminar on Testing Solar Energy Materials and Systems (Institute of Environmental Science, Mt. Prospect, IL, 1978), p. 83.

For example, B. H. Billings, in American Institute of Physics HandbookD. E. Gray, Ed. (McGraw-Hill, New York, 1972), Chap. 6; Table 6g—1 and 2 give reflectance values above 95% for evaporated Cu films.

Commercially available, e.g., from Carl Zeiss Co., Wurttemberg, FRG, or Eastman Kodak Co., Rochester, NY.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Integrating sphere design with components as indicated.

Fig. 2
Fig. 2

Reflectance spectra for a polished copper plate.

Fig. 3
Fig. 3

Diffuse reflectance at two fixed wavelengths vs sample orientation as defined in Fig. 2: – – – –, steel wool polished Cu plate; …, copper sample after chemical oxidation.

Fig. 4
Fig. 4

Inside the sphere and the light disk created by the structured sample. The section shown is the closed specular exit port 5 between the two entrance ports 1 and 2, where the numbers refer to Fig. 1: (a) θ = 0°; (b) θ = 60°.

Fig. 5
Fig. 5

Signal intensity vs tilt angle φ for three different θ values. The tilt angle is defined by the inset in the bottom diagram. Wavelength λ = 1200, PbS detector.

Fig. 6
Fig. 6

Total reflectance spectra for two solar absorber surfaces in different θ positions. Also indicated are the integrated solar absorption values α obtained from the various spectra.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = 1 - i R ( λ i ) S ( λ i ) i S ( λ i ) ,

Metrics