Abstract

We report on a theoretical and experimental study of the temporal and spatial dynamics of plasmas produced in liquids by single Nd: YAG laser pulses of nanosecond duration. This study was motivated by the increasing attention paid to the phenomenon of optical breakdown and to its related effects on tissues and media in connection with microsurgical techniques developed for ophthalmology and urology. Streak camera recordings of the emission from laser-induced plasmas were taken in distilled and tap water in controlled irradiation conditions. From streak recordings, plasma starting times as a function of the axial distance from focus, the overall length of the plasma column, plasma lifetimes, and plasma absorption were derived and analyzed. In this first paper we analyze the curves of plasma starting time, as a function of the irradiation parameters and of the properties of the medium. We show that a model obtained by upgrading the theory of the moving breakdown allows accurate interpretation of the experimental observations.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Trokel, Ed., YAG Laser Ophthalmic Microsurgery (Appleton Century Crofts, Norwalk, 1983).
  2. M. A. Mainster, D. H. Sliney, C. D. Belcher, S. M. Buzney, “Laser Photodisruptors—Damage Mechanisms, Instrument Design and Safety,” Ophthalmology 90, 973 (1983).
    [PubMed]
  3. C. A. Puliafito, R. F. Steinert, “Short-Pulsed Laser Microsurgery of the Eye: Biophysical Considerations,” IEEE J. Quantum Electron. QE-20, 1442 (1984).
    [CrossRef]
  4. H. P. Lörtscher, “Laser-Induced Breakdown for Ophthalmic Microsurgery,” in Ref. 1, Chap. 4, p. 39.
  5. J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, R. F. Steinert, “Time-Resolved Studies of Nd:YAG Laser-Induced Breakdown, Plasma Formation, Acoustic Wave Generation, and Cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771 (1986).
  6. W. Lauterborn, K. J. Ebeling, “High-Speed Holography of Laser-Induced Breakdown in Liquids,” Appl. Phys. Lett. 31, 663 (1977).
    [CrossRef]
  7. C. E. Bell, J. A. Landt, “Laser-Induced High Pressure Shock Waves in Water,” Appl. Phys. Lett. 10, 46 (1967).
    [CrossRef]
  8. A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation Bubble Dynamics and Acoustic Transient Generation in Ocular Surgery with Pulsed Nd:YAG Lasers,” Ophthalmol. 93, 1259 (1986).
  9. E. S. Sherrard, M. G. Kerr Muir, “Damage to the Corneal Endothelium by Q-Switched Nd:YAG Laser Posterior Capsulotomy,” Trans. Ophthalmol. Soc. U.K. 104, 524 (1985).
  10. D. Aron-Rosa, J. Aron, J. Griesemann, R. Thyzel, “Use of the Neodymium:YAG Laser to Open the Posterior Capsule After Lens Implant Surgery,” J. Am. Intraoc. Implant Soc. 6, 352 (1980).
  11. F. Fankhauser, P. Roussel, J. Steffen, “Clinical Studies on the Efficiency of High Power Laser Radiation upon Some Structure of the Anterior Segment of the Human Eye: First Experiments of the Treatment of Some Pathological Conditions of the Anterior Segment of the Eye by Means of a Q-Switched Laser System,” Int. Ophthalmol. 3, 129 (1981).
    [CrossRef] [PubMed]
  12. A. Hochstetter, “Lasers in Urology,” Lasers Med. Surg. 6, 412 (1986).
    [CrossRef]
  13. F. Docchio, C. A. Sacchi, J. Marshall, “Experimental Investigation of Optical Breakdown Thresholds in Ocular Media Under Single Pulse Irradiation with Different Pulse Durations,” Lasers Ophthalmol. 1, 83 (1986).
  14. S. K. Davi, D. E. Gaasterland, C. E. Cummings, G. Liesegang, “Pulsed Laser Damage Thresholds in vitro for Intraocular Lenses and Membranes,” IEEE J. Quantum Electron. QE-20, 1458 (1984).
    [CrossRef]
  15. R. F. Steinert, C. A. Puliafito, S. Trokel, “Plasma Formation and Shielding by Three Ophthalmic Neodymium-YAG Lasers,” Am. J. Ophthalmol. 96, 427 (1983).
    [PubMed]
  16. F. Docchio, L. Dossi, C. A. Sacchi, “Q-Switched Laser Irradiation of the Eye and Related Phenomena: An Experimental Study. II: Shielding Properties of Laser-Induced Plasmas in Liquids and Membranes,” Lasers Life Sci. 1, 105 (1986).
  17. P. Felix, A. T. Ellis, “Laser-Induced Liquid Breakdown: A Step-by-Step Account,” Appl. Phys. Lett. 19, 484 (1971).
    [CrossRef]
  18. S. A. Ramsden, P. Savic, “A Radiative Detonation Model for the Development of a Laser-Induced Spark in Air,” Nature London 203, 217 (1964).
    [CrossRef]
  19. J. W. Daiber, H. M. Thompson, “Laser-Driven Detonation Waves in Gases,” Phys. Fluids 10, 1162 (1967).
    [CrossRef]
  20. I. Meyer, P. Stritzke, “Expansion of Laser Sparks Produced by a Mode-Locked Nd:Glass Laser,” Appl. Phys. 10, 125 (1976).
    [CrossRef]
  21. A. J. Alcock, C. De Michelis, K. Hamal, B. A. Tozer, “Expansion Mechanism in a Laser-Produced Spark,” Phys. Rev. Lett. 20, 1095 (1968).
    [CrossRef]
  22. Yu. P. Raizer, “Breakdown and Heating of Gases Under the Influence of a Laser Beam,” Sov. Phys. Usp. 8, 650 (1966).
    [CrossRef]
  23. F. Docchio, P. Regondi, M. R. C. Capon, J. Mellerio, “Study of the Temporal and Spatial Dynamics of Plasmas Induced in Liquids by Nanosecond Nd:YAG Laser Pulses. 2: Plasma Luminescence and Shielding,” Appl. Opt. 27, 3669 (1988).
    [CrossRef] [PubMed]
  24. F. Docchio, L. Dossi, C. A. Sacchi, “Q-Switched Laser Irradiation of the Eye and Related Phenomena: An Experimental Study. I: Optical Breakdown Threshold Determination in Liquids and Membranes,” Lasers Life Sci. 1, 87 (1986).
  25. M. R. C. Capon, J. Mellerio, “Nd:YAG Lasers: Plasma Characteristics and Damage Mechanisms,” Lasers Ophthalmol. 1, 95 (1986).
  26. P. A. Barnes, K. E. Rieckhoff, “Laser-Induced Underwater Sparks,” Appl. Phys. Lett. 13, 282 (1968).
    [CrossRef]
  27. M. Bass, H. H. Barrett, “Avalanche Breakdown and the Probabilistic Nature of Laser-Induced Damage,” IEEE J. Quantum Electron. QE-9, 338 (1972).
    [CrossRef]
  28. J. M. Wiesenfeld, E. P. Ippen, “Dynamics of Electron Solvation in Liquid Water,” Chem. Phys. Lett. 73, 47 (1980).
    [CrossRef]
  29. A. J. Alcock, C. De Michelis, M. C. Richardson, “Breakdown and Self Focusing Effects in Gases Produced by Means of a Single-Mode Ruby Laser,” IEEE J. Quantum Electron. QE-6, 622 (1970).
    [CrossRef]
  30. C. De Michelis, “Laser-Induced Gas Breakdown: a Bibliographical Review,” IEEE J. Quantum Electron. QE-5, 188 (1969).
    [CrossRef]

1988 (1)

1986 (7)

F. Docchio, L. Dossi, C. A. Sacchi, “Q-Switched Laser Irradiation of the Eye and Related Phenomena: An Experimental Study. I: Optical Breakdown Threshold Determination in Liquids and Membranes,” Lasers Life Sci. 1, 87 (1986).

M. R. C. Capon, J. Mellerio, “Nd:YAG Lasers: Plasma Characteristics and Damage Mechanisms,” Lasers Ophthalmol. 1, 95 (1986).

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, R. F. Steinert, “Time-Resolved Studies of Nd:YAG Laser-Induced Breakdown, Plasma Formation, Acoustic Wave Generation, and Cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771 (1986).

A. Hochstetter, “Lasers in Urology,” Lasers Med. Surg. 6, 412 (1986).
[CrossRef]

F. Docchio, C. A. Sacchi, J. Marshall, “Experimental Investigation of Optical Breakdown Thresholds in Ocular Media Under Single Pulse Irradiation with Different Pulse Durations,” Lasers Ophthalmol. 1, 83 (1986).

A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation Bubble Dynamics and Acoustic Transient Generation in Ocular Surgery with Pulsed Nd:YAG Lasers,” Ophthalmol. 93, 1259 (1986).

F. Docchio, L. Dossi, C. A. Sacchi, “Q-Switched Laser Irradiation of the Eye and Related Phenomena: An Experimental Study. II: Shielding Properties of Laser-Induced Plasmas in Liquids and Membranes,” Lasers Life Sci. 1, 105 (1986).

1985 (1)

E. S. Sherrard, M. G. Kerr Muir, “Damage to the Corneal Endothelium by Q-Switched Nd:YAG Laser Posterior Capsulotomy,” Trans. Ophthalmol. Soc. U.K. 104, 524 (1985).

1984 (2)

S. K. Davi, D. E. Gaasterland, C. E. Cummings, G. Liesegang, “Pulsed Laser Damage Thresholds in vitro for Intraocular Lenses and Membranes,” IEEE J. Quantum Electron. QE-20, 1458 (1984).
[CrossRef]

C. A. Puliafito, R. F. Steinert, “Short-Pulsed Laser Microsurgery of the Eye: Biophysical Considerations,” IEEE J. Quantum Electron. QE-20, 1442 (1984).
[CrossRef]

1983 (2)

M. A. Mainster, D. H. Sliney, C. D. Belcher, S. M. Buzney, “Laser Photodisruptors—Damage Mechanisms, Instrument Design and Safety,” Ophthalmology 90, 973 (1983).
[PubMed]

R. F. Steinert, C. A. Puliafito, S. Trokel, “Plasma Formation and Shielding by Three Ophthalmic Neodymium-YAG Lasers,” Am. J. Ophthalmol. 96, 427 (1983).
[PubMed]

1981 (1)

F. Fankhauser, P. Roussel, J. Steffen, “Clinical Studies on the Efficiency of High Power Laser Radiation upon Some Structure of the Anterior Segment of the Human Eye: First Experiments of the Treatment of Some Pathological Conditions of the Anterior Segment of the Eye by Means of a Q-Switched Laser System,” Int. Ophthalmol. 3, 129 (1981).
[CrossRef] [PubMed]

1980 (2)

D. Aron-Rosa, J. Aron, J. Griesemann, R. Thyzel, “Use of the Neodymium:YAG Laser to Open the Posterior Capsule After Lens Implant Surgery,” J. Am. Intraoc. Implant Soc. 6, 352 (1980).

J. M. Wiesenfeld, E. P. Ippen, “Dynamics of Electron Solvation in Liquid Water,” Chem. Phys. Lett. 73, 47 (1980).
[CrossRef]

1977 (1)

W. Lauterborn, K. J. Ebeling, “High-Speed Holography of Laser-Induced Breakdown in Liquids,” Appl. Phys. Lett. 31, 663 (1977).
[CrossRef]

1976 (1)

I. Meyer, P. Stritzke, “Expansion of Laser Sparks Produced by a Mode-Locked Nd:Glass Laser,” Appl. Phys. 10, 125 (1976).
[CrossRef]

1972 (1)

M. Bass, H. H. Barrett, “Avalanche Breakdown and the Probabilistic Nature of Laser-Induced Damage,” IEEE J. Quantum Electron. QE-9, 338 (1972).
[CrossRef]

1971 (1)

P. Felix, A. T. Ellis, “Laser-Induced Liquid Breakdown: A Step-by-Step Account,” Appl. Phys. Lett. 19, 484 (1971).
[CrossRef]

1970 (1)

A. J. Alcock, C. De Michelis, M. C. Richardson, “Breakdown and Self Focusing Effects in Gases Produced by Means of a Single-Mode Ruby Laser,” IEEE J. Quantum Electron. QE-6, 622 (1970).
[CrossRef]

1969 (1)

C. De Michelis, “Laser-Induced Gas Breakdown: a Bibliographical Review,” IEEE J. Quantum Electron. QE-5, 188 (1969).
[CrossRef]

1968 (2)

P. A. Barnes, K. E. Rieckhoff, “Laser-Induced Underwater Sparks,” Appl. Phys. Lett. 13, 282 (1968).
[CrossRef]

A. J. Alcock, C. De Michelis, K. Hamal, B. A. Tozer, “Expansion Mechanism in a Laser-Produced Spark,” Phys. Rev. Lett. 20, 1095 (1968).
[CrossRef]

1967 (2)

J. W. Daiber, H. M. Thompson, “Laser-Driven Detonation Waves in Gases,” Phys. Fluids 10, 1162 (1967).
[CrossRef]

C. E. Bell, J. A. Landt, “Laser-Induced High Pressure Shock Waves in Water,” Appl. Phys. Lett. 10, 46 (1967).
[CrossRef]

1966 (1)

Yu. P. Raizer, “Breakdown and Heating of Gases Under the Influence of a Laser Beam,” Sov. Phys. Usp. 8, 650 (1966).
[CrossRef]

1964 (1)

S. A. Ramsden, P. Savic, “A Radiative Detonation Model for the Development of a Laser-Induced Spark in Air,” Nature London 203, 217 (1964).
[CrossRef]

Alcock, A. J.

A. J. Alcock, C. De Michelis, M. C. Richardson, “Breakdown and Self Focusing Effects in Gases Produced by Means of a Single-Mode Ruby Laser,” IEEE J. Quantum Electron. QE-6, 622 (1970).
[CrossRef]

A. J. Alcock, C. De Michelis, K. Hamal, B. A. Tozer, “Expansion Mechanism in a Laser-Produced Spark,” Phys. Rev. Lett. 20, 1095 (1968).
[CrossRef]

Aron, J.

D. Aron-Rosa, J. Aron, J. Griesemann, R. Thyzel, “Use of the Neodymium:YAG Laser to Open the Posterior Capsule After Lens Implant Surgery,” J. Am. Intraoc. Implant Soc. 6, 352 (1980).

Aron-Rosa, D.

D. Aron-Rosa, J. Aron, J. Griesemann, R. Thyzel, “Use of the Neodymium:YAG Laser to Open the Posterior Capsule After Lens Implant Surgery,” J. Am. Intraoc. Implant Soc. 6, 352 (1980).

Barnes, P. A.

P. A. Barnes, K. E. Rieckhoff, “Laser-Induced Underwater Sparks,” Appl. Phys. Lett. 13, 282 (1968).
[CrossRef]

Barrett, H. H.

M. Bass, H. H. Barrett, “Avalanche Breakdown and the Probabilistic Nature of Laser-Induced Damage,” IEEE J. Quantum Electron. QE-9, 338 (1972).
[CrossRef]

Bass, M.

M. Bass, H. H. Barrett, “Avalanche Breakdown and the Probabilistic Nature of Laser-Induced Damage,” IEEE J. Quantum Electron. QE-9, 338 (1972).
[CrossRef]

Belcher, C. D.

M. A. Mainster, D. H. Sliney, C. D. Belcher, S. M. Buzney, “Laser Photodisruptors—Damage Mechanisms, Instrument Design and Safety,” Ophthalmology 90, 973 (1983).
[PubMed]

Bell, C. E.

C. E. Bell, J. A. Landt, “Laser-Induced High Pressure Shock Waves in Water,” Appl. Phys. Lett. 10, 46 (1967).
[CrossRef]

Buzney, S. M.

M. A. Mainster, D. H. Sliney, C. D. Belcher, S. M. Buzney, “Laser Photodisruptors—Damage Mechanisms, Instrument Design and Safety,” Ophthalmology 90, 973 (1983).
[PubMed]

Capon, M. R. C.

Cummings, C. E.

S. K. Davi, D. E. Gaasterland, C. E. Cummings, G. Liesegang, “Pulsed Laser Damage Thresholds in vitro for Intraocular Lenses and Membranes,” IEEE J. Quantum Electron. QE-20, 1458 (1984).
[CrossRef]

Daiber, J. W.

J. W. Daiber, H. M. Thompson, “Laser-Driven Detonation Waves in Gases,” Phys. Fluids 10, 1162 (1967).
[CrossRef]

Davi, S. K.

S. K. Davi, D. E. Gaasterland, C. E. Cummings, G. Liesegang, “Pulsed Laser Damage Thresholds in vitro for Intraocular Lenses and Membranes,” IEEE J. Quantum Electron. QE-20, 1458 (1984).
[CrossRef]

De Michelis, C.

A. J. Alcock, C. De Michelis, M. C. Richardson, “Breakdown and Self Focusing Effects in Gases Produced by Means of a Single-Mode Ruby Laser,” IEEE J. Quantum Electron. QE-6, 622 (1970).
[CrossRef]

C. De Michelis, “Laser-Induced Gas Breakdown: a Bibliographical Review,” IEEE J. Quantum Electron. QE-5, 188 (1969).
[CrossRef]

A. J. Alcock, C. De Michelis, K. Hamal, B. A. Tozer, “Expansion Mechanism in a Laser-Produced Spark,” Phys. Rev. Lett. 20, 1095 (1968).
[CrossRef]

Docchio, F.

F. Docchio, P. Regondi, M. R. C. Capon, J. Mellerio, “Study of the Temporal and Spatial Dynamics of Plasmas Induced in Liquids by Nanosecond Nd:YAG Laser Pulses. 2: Plasma Luminescence and Shielding,” Appl. Opt. 27, 3669 (1988).
[CrossRef] [PubMed]

F. Docchio, L. Dossi, C. A. Sacchi, “Q-Switched Laser Irradiation of the Eye and Related Phenomena: An Experimental Study. I: Optical Breakdown Threshold Determination in Liquids and Membranes,” Lasers Life Sci. 1, 87 (1986).

F. Docchio, L. Dossi, C. A. Sacchi, “Q-Switched Laser Irradiation of the Eye and Related Phenomena: An Experimental Study. II: Shielding Properties of Laser-Induced Plasmas in Liquids and Membranes,” Lasers Life Sci. 1, 105 (1986).

F. Docchio, C. A. Sacchi, J. Marshall, “Experimental Investigation of Optical Breakdown Thresholds in Ocular Media Under Single Pulse Irradiation with Different Pulse Durations,” Lasers Ophthalmol. 1, 83 (1986).

Dossi, L.

F. Docchio, L. Dossi, C. A. Sacchi, “Q-Switched Laser Irradiation of the Eye and Related Phenomena: An Experimental Study. II: Shielding Properties of Laser-Induced Plasmas in Liquids and Membranes,” Lasers Life Sci. 1, 105 (1986).

F. Docchio, L. Dossi, C. A. Sacchi, “Q-Switched Laser Irradiation of the Eye and Related Phenomena: An Experimental Study. I: Optical Breakdown Threshold Determination in Liquids and Membranes,” Lasers Life Sci. 1, 87 (1986).

Ebeling, K. J.

W. Lauterborn, K. J. Ebeling, “High-Speed Holography of Laser-Induced Breakdown in Liquids,” Appl. Phys. Lett. 31, 663 (1977).
[CrossRef]

Ellis, A. T.

P. Felix, A. T. Ellis, “Laser-Induced Liquid Breakdown: A Step-by-Step Account,” Appl. Phys. Lett. 19, 484 (1971).
[CrossRef]

Fankhauser, F.

F. Fankhauser, P. Roussel, J. Steffen, “Clinical Studies on the Efficiency of High Power Laser Radiation upon Some Structure of the Anterior Segment of the Human Eye: First Experiments of the Treatment of Some Pathological Conditions of the Anterior Segment of the Eye by Means of a Q-Switched Laser System,” Int. Ophthalmol. 3, 129 (1981).
[CrossRef] [PubMed]

Felix, P.

P. Felix, A. T. Ellis, “Laser-Induced Liquid Breakdown: A Step-by-Step Account,” Appl. Phys. Lett. 19, 484 (1971).
[CrossRef]

Fujimoto, J. G.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, R. F. Steinert, “Time-Resolved Studies of Nd:YAG Laser-Induced Breakdown, Plasma Formation, Acoustic Wave Generation, and Cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771 (1986).

Gaasterland, D. E.

S. K. Davi, D. E. Gaasterland, C. E. Cummings, G. Liesegang, “Pulsed Laser Damage Thresholds in vitro for Intraocular Lenses and Membranes,” IEEE J. Quantum Electron. QE-20, 1458 (1984).
[CrossRef]

Griesemann, J.

D. Aron-Rosa, J. Aron, J. Griesemann, R. Thyzel, “Use of the Neodymium:YAG Laser to Open the Posterior Capsule After Lens Implant Surgery,” J. Am. Intraoc. Implant Soc. 6, 352 (1980).

Hamal, K.

A. J. Alcock, C. De Michelis, K. Hamal, B. A. Tozer, “Expansion Mechanism in a Laser-Produced Spark,” Phys. Rev. Lett. 20, 1095 (1968).
[CrossRef]

Hentschel, W.

A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation Bubble Dynamics and Acoustic Transient Generation in Ocular Surgery with Pulsed Nd:YAG Lasers,” Ophthalmol. 93, 1259 (1986).

Hochstetter, A.

A. Hochstetter, “Lasers in Urology,” Lasers Med. Surg. 6, 412 (1986).
[CrossRef]

Holzfuss, J.

A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation Bubble Dynamics and Acoustic Transient Generation in Ocular Surgery with Pulsed Nd:YAG Lasers,” Ophthalmol. 93, 1259 (1986).

Ippen, E. P.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, R. F. Steinert, “Time-Resolved Studies of Nd:YAG Laser-Induced Breakdown, Plasma Formation, Acoustic Wave Generation, and Cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771 (1986).

J. M. Wiesenfeld, E. P. Ippen, “Dynamics of Electron Solvation in Liquid Water,” Chem. Phys. Lett. 73, 47 (1980).
[CrossRef]

Kerr Muir, M. G.

E. S. Sherrard, M. G. Kerr Muir, “Damage to the Corneal Endothelium by Q-Switched Nd:YAG Laser Posterior Capsulotomy,” Trans. Ophthalmol. Soc. U.K. 104, 524 (1985).

Landt, J. A.

C. E. Bell, J. A. Landt, “Laser-Induced High Pressure Shock Waves in Water,” Appl. Phys. Lett. 10, 46 (1967).
[CrossRef]

Lauterborn, W.

A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation Bubble Dynamics and Acoustic Transient Generation in Ocular Surgery with Pulsed Nd:YAG Lasers,” Ophthalmol. 93, 1259 (1986).

W. Lauterborn, K. J. Ebeling, “High-Speed Holography of Laser-Induced Breakdown in Liquids,” Appl. Phys. Lett. 31, 663 (1977).
[CrossRef]

Liesegang, G.

S. K. Davi, D. E. Gaasterland, C. E. Cummings, G. Liesegang, “Pulsed Laser Damage Thresholds in vitro for Intraocular Lenses and Membranes,” IEEE J. Quantum Electron. QE-20, 1458 (1984).
[CrossRef]

Lin, W. Z.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, R. F. Steinert, “Time-Resolved Studies of Nd:YAG Laser-Induced Breakdown, Plasma Formation, Acoustic Wave Generation, and Cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771 (1986).

Lörtscher, H. P.

H. P. Lörtscher, “Laser-Induced Breakdown for Ophthalmic Microsurgery,” in Ref. 1, Chap. 4, p. 39.

Mainster, M. A.

M. A. Mainster, D. H. Sliney, C. D. Belcher, S. M. Buzney, “Laser Photodisruptors—Damage Mechanisms, Instrument Design and Safety,” Ophthalmology 90, 973 (1983).
[PubMed]

Marshall, J.

F. Docchio, C. A. Sacchi, J. Marshall, “Experimental Investigation of Optical Breakdown Thresholds in Ocular Media Under Single Pulse Irradiation with Different Pulse Durations,” Lasers Ophthalmol. 1, 83 (1986).

Mellerio, J.

Meyer, I.

I. Meyer, P. Stritzke, “Expansion of Laser Sparks Produced by a Mode-Locked Nd:Glass Laser,” Appl. Phys. 10, 125 (1976).
[CrossRef]

Puliafito, C. A.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, R. F. Steinert, “Time-Resolved Studies of Nd:YAG Laser-Induced Breakdown, Plasma Formation, Acoustic Wave Generation, and Cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771 (1986).

C. A. Puliafito, R. F. Steinert, “Short-Pulsed Laser Microsurgery of the Eye: Biophysical Considerations,” IEEE J. Quantum Electron. QE-20, 1442 (1984).
[CrossRef]

R. F. Steinert, C. A. Puliafito, S. Trokel, “Plasma Formation and Shielding by Three Ophthalmic Neodymium-YAG Lasers,” Am. J. Ophthalmol. 96, 427 (1983).
[PubMed]

Raizer, Yu. P.

Yu. P. Raizer, “Breakdown and Heating of Gases Under the Influence of a Laser Beam,” Sov. Phys. Usp. 8, 650 (1966).
[CrossRef]

Ramsden, S. A.

S. A. Ramsden, P. Savic, “A Radiative Detonation Model for the Development of a Laser-Induced Spark in Air,” Nature London 203, 217 (1964).
[CrossRef]

Regondi, P.

Richardson, M. C.

A. J. Alcock, C. De Michelis, M. C. Richardson, “Breakdown and Self Focusing Effects in Gases Produced by Means of a Single-Mode Ruby Laser,” IEEE J. Quantum Electron. QE-6, 622 (1970).
[CrossRef]

Rieckhoff, K. E.

P. A. Barnes, K. E. Rieckhoff, “Laser-Induced Underwater Sparks,” Appl. Phys. Lett. 13, 282 (1968).
[CrossRef]

Roussel, P.

F. Fankhauser, P. Roussel, J. Steffen, “Clinical Studies on the Efficiency of High Power Laser Radiation upon Some Structure of the Anterior Segment of the Human Eye: First Experiments of the Treatment of Some Pathological Conditions of the Anterior Segment of the Eye by Means of a Q-Switched Laser System,” Int. Ophthalmol. 3, 129 (1981).
[CrossRef] [PubMed]

Sacchi, C. A.

F. Docchio, C. A. Sacchi, J. Marshall, “Experimental Investigation of Optical Breakdown Thresholds in Ocular Media Under Single Pulse Irradiation with Different Pulse Durations,” Lasers Ophthalmol. 1, 83 (1986).

F. Docchio, L. Dossi, C. A. Sacchi, “Q-Switched Laser Irradiation of the Eye and Related Phenomena: An Experimental Study. I: Optical Breakdown Threshold Determination in Liquids and Membranes,” Lasers Life Sci. 1, 87 (1986).

F. Docchio, L. Dossi, C. A. Sacchi, “Q-Switched Laser Irradiation of the Eye and Related Phenomena: An Experimental Study. II: Shielding Properties of Laser-Induced Plasmas in Liquids and Membranes,” Lasers Life Sci. 1, 105 (1986).

Savic, P.

S. A. Ramsden, P. Savic, “A Radiative Detonation Model for the Development of a Laser-Induced Spark in Air,” Nature London 203, 217 (1964).
[CrossRef]

Sherrard, E. S.

E. S. Sherrard, M. G. Kerr Muir, “Damage to the Corneal Endothelium by Q-Switched Nd:YAG Laser Posterior Capsulotomy,” Trans. Ophthalmol. Soc. U.K. 104, 524 (1985).

Sliney, D. H.

M. A. Mainster, D. H. Sliney, C. D. Belcher, S. M. Buzney, “Laser Photodisruptors—Damage Mechanisms, Instrument Design and Safety,” Ophthalmology 90, 973 (1983).
[PubMed]

Steffen, J.

F. Fankhauser, P. Roussel, J. Steffen, “Clinical Studies on the Efficiency of High Power Laser Radiation upon Some Structure of the Anterior Segment of the Human Eye: First Experiments of the Treatment of Some Pathological Conditions of the Anterior Segment of the Eye by Means of a Q-Switched Laser System,” Int. Ophthalmol. 3, 129 (1981).
[CrossRef] [PubMed]

Steinert, R. F.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, R. F. Steinert, “Time-Resolved Studies of Nd:YAG Laser-Induced Breakdown, Plasma Formation, Acoustic Wave Generation, and Cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771 (1986).

C. A. Puliafito, R. F. Steinert, “Short-Pulsed Laser Microsurgery of the Eye: Biophysical Considerations,” IEEE J. Quantum Electron. QE-20, 1442 (1984).
[CrossRef]

R. F. Steinert, C. A. Puliafito, S. Trokel, “Plasma Formation and Shielding by Three Ophthalmic Neodymium-YAG Lasers,” Am. J. Ophthalmol. 96, 427 (1983).
[PubMed]

Stritzke, P.

I. Meyer, P. Stritzke, “Expansion of Laser Sparks Produced by a Mode-Locked Nd:Glass Laser,” Appl. Phys. 10, 125 (1976).
[CrossRef]

Thompson, H. M.

J. W. Daiber, H. M. Thompson, “Laser-Driven Detonation Waves in Gases,” Phys. Fluids 10, 1162 (1967).
[CrossRef]

Thyzel, R.

D. Aron-Rosa, J. Aron, J. Griesemann, R. Thyzel, “Use of the Neodymium:YAG Laser to Open the Posterior Capsule After Lens Implant Surgery,” J. Am. Intraoc. Implant Soc. 6, 352 (1980).

Tozer, B. A.

A. J. Alcock, C. De Michelis, K. Hamal, B. A. Tozer, “Expansion Mechanism in a Laser-Produced Spark,” Phys. Rev. Lett. 20, 1095 (1968).
[CrossRef]

Trokel, S.

R. F. Steinert, C. A. Puliafito, S. Trokel, “Plasma Formation and Shielding by Three Ophthalmic Neodymium-YAG Lasers,” Am. J. Ophthalmol. 96, 427 (1983).
[PubMed]

Vogel, A.

A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation Bubble Dynamics and Acoustic Transient Generation in Ocular Surgery with Pulsed Nd:YAG Lasers,” Ophthalmol. 93, 1259 (1986).

Wiesenfeld, J. M.

J. M. Wiesenfeld, E. P. Ippen, “Dynamics of Electron Solvation in Liquid Water,” Chem. Phys. Lett. 73, 47 (1980).
[CrossRef]

Am. J. Ophthalmol. (1)

R. F. Steinert, C. A. Puliafito, S. Trokel, “Plasma Formation and Shielding by Three Ophthalmic Neodymium-YAG Lasers,” Am. J. Ophthalmol. 96, 427 (1983).
[PubMed]

Appl. Opt. (1)

Appl. Phys. (1)

I. Meyer, P. Stritzke, “Expansion of Laser Sparks Produced by a Mode-Locked Nd:Glass Laser,” Appl. Phys. 10, 125 (1976).
[CrossRef]

Appl. Phys. Lett. (4)

P. A. Barnes, K. E. Rieckhoff, “Laser-Induced Underwater Sparks,” Appl. Phys. Lett. 13, 282 (1968).
[CrossRef]

P. Felix, A. T. Ellis, “Laser-Induced Liquid Breakdown: A Step-by-Step Account,” Appl. Phys. Lett. 19, 484 (1971).
[CrossRef]

W. Lauterborn, K. J. Ebeling, “High-Speed Holography of Laser-Induced Breakdown in Liquids,” Appl. Phys. Lett. 31, 663 (1977).
[CrossRef]

C. E. Bell, J. A. Landt, “Laser-Induced High Pressure Shock Waves in Water,” Appl. Phys. Lett. 10, 46 (1967).
[CrossRef]

Chem. Phys. Lett. (1)

J. M. Wiesenfeld, E. P. Ippen, “Dynamics of Electron Solvation in Liquid Water,” Chem. Phys. Lett. 73, 47 (1980).
[CrossRef]

IEEE J. Quantum Electron. (5)

A. J. Alcock, C. De Michelis, M. C. Richardson, “Breakdown and Self Focusing Effects in Gases Produced by Means of a Single-Mode Ruby Laser,” IEEE J. Quantum Electron. QE-6, 622 (1970).
[CrossRef]

C. De Michelis, “Laser-Induced Gas Breakdown: a Bibliographical Review,” IEEE J. Quantum Electron. QE-5, 188 (1969).
[CrossRef]

M. Bass, H. H. Barrett, “Avalanche Breakdown and the Probabilistic Nature of Laser-Induced Damage,” IEEE J. Quantum Electron. QE-9, 338 (1972).
[CrossRef]

S. K. Davi, D. E. Gaasterland, C. E. Cummings, G. Liesegang, “Pulsed Laser Damage Thresholds in vitro for Intraocular Lenses and Membranes,” IEEE J. Quantum Electron. QE-20, 1458 (1984).
[CrossRef]

C. A. Puliafito, R. F. Steinert, “Short-Pulsed Laser Microsurgery of the Eye: Biophysical Considerations,” IEEE J. Quantum Electron. QE-20, 1442 (1984).
[CrossRef]

Int. Ophthalmol. (1)

F. Fankhauser, P. Roussel, J. Steffen, “Clinical Studies on the Efficiency of High Power Laser Radiation upon Some Structure of the Anterior Segment of the Human Eye: First Experiments of the Treatment of Some Pathological Conditions of the Anterior Segment of the Eye by Means of a Q-Switched Laser System,” Int. Ophthalmol. 3, 129 (1981).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, R. F. Steinert, “Time-Resolved Studies of Nd:YAG Laser-Induced Breakdown, Plasma Formation, Acoustic Wave Generation, and Cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771 (1986).

J. Am. Intraoc. Implant Soc. (1)

D. Aron-Rosa, J. Aron, J. Griesemann, R. Thyzel, “Use of the Neodymium:YAG Laser to Open the Posterior Capsule After Lens Implant Surgery,” J. Am. Intraoc. Implant Soc. 6, 352 (1980).

Lasers Life Sci. (2)

F. Docchio, L. Dossi, C. A. Sacchi, “Q-Switched Laser Irradiation of the Eye and Related Phenomena: An Experimental Study. II: Shielding Properties of Laser-Induced Plasmas in Liquids and Membranes,” Lasers Life Sci. 1, 105 (1986).

F. Docchio, L. Dossi, C. A. Sacchi, “Q-Switched Laser Irradiation of the Eye and Related Phenomena: An Experimental Study. I: Optical Breakdown Threshold Determination in Liquids and Membranes,” Lasers Life Sci. 1, 87 (1986).

Lasers Med. Surg. (1)

A. Hochstetter, “Lasers in Urology,” Lasers Med. Surg. 6, 412 (1986).
[CrossRef]

Lasers Ophthalmol. (2)

F. Docchio, C. A. Sacchi, J. Marshall, “Experimental Investigation of Optical Breakdown Thresholds in Ocular Media Under Single Pulse Irradiation with Different Pulse Durations,” Lasers Ophthalmol. 1, 83 (1986).

M. R. C. Capon, J. Mellerio, “Nd:YAG Lasers: Plasma Characteristics and Damage Mechanisms,” Lasers Ophthalmol. 1, 95 (1986).

Nature London (1)

S. A. Ramsden, P. Savic, “A Radiative Detonation Model for the Development of a Laser-Induced Spark in Air,” Nature London 203, 217 (1964).
[CrossRef]

Ophthalmol. (1)

A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation Bubble Dynamics and Acoustic Transient Generation in Ocular Surgery with Pulsed Nd:YAG Lasers,” Ophthalmol. 93, 1259 (1986).

Ophthalmology (1)

M. A. Mainster, D. H. Sliney, C. D. Belcher, S. M. Buzney, “Laser Photodisruptors—Damage Mechanisms, Instrument Design and Safety,” Ophthalmology 90, 973 (1983).
[PubMed]

Phys. Fluids (1)

J. W. Daiber, H. M. Thompson, “Laser-Driven Detonation Waves in Gases,” Phys. Fluids 10, 1162 (1967).
[CrossRef]

Phys. Rev. Lett. (1)

A. J. Alcock, C. De Michelis, K. Hamal, B. A. Tozer, “Expansion Mechanism in a Laser-Produced Spark,” Phys. Rev. Lett. 20, 1095 (1968).
[CrossRef]

Sov. Phys. Usp. (1)

Yu. P. Raizer, “Breakdown and Heating of Gases Under the Influence of a Laser Beam,” Sov. Phys. Usp. 8, 650 (1966).
[CrossRef]

Trans. Ophthalmol. Soc. U.K. (1)

E. S. Sherrard, M. G. Kerr Muir, “Damage to the Corneal Endothelium by Q-Switched Nd:YAG Laser Posterior Capsulotomy,” Trans. Ophthalmol. Soc. U.K. 104, 524 (1985).

Other (2)

S. Trokel, Ed., YAG Laser Ophthalmic Microsurgery (Appleton Century Crofts, Norwalk, 1983).

H. P. Lörtscher, “Laser-Induced Breakdown for Ophthalmic Microsurgery,” in Ref. 1, Chap. 4, p. 39.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for streak measurements of plasmas induced in liquids by Nd:YAG laser pulses of 12-ns FWHM duration. The additional setup used for high speed framing is shown with dotted lines. Legends are S.O., schematics of the slit optics; Obj, expansion objective; P.C., photographic camera.

Fig. 2
Fig. 2

Streak photographs of plasmas produced in distilled water by a 12-ns TEM00 mode Nd:YAG laser for different values of the parameter β which is defined as the ratio of the peak power, Pmax to the peak power at threshold Pth (see text for the definition of Pth). The spot size at the focus is 13 μm. Laser light enters the plasma region from the top of the picture. (a) β = 1.2, (b) β = 2.6, (c) β = 5.0.

Fig. 3
Fig. 3

Streak photographs of plasmas produced in tap water. Laser parameters are as in Fig. 2: (a) β = 1.2, (b) β = 5.0, (c) β = 10.0.

Fig. 4
Fig. 4

High speed photographs of the breakdown region in distilled water at a laser peak power that coincides with the threshold value for breakdown. Laser parameters are as in Fig. 2: (a) t = 0, (b) t = 50 ns, (c) t = 150 ns, (d) t = 250 ns, (e) t = 350 ns, (f) t = 450 ns.

Fig. 5
Fig. 5

Diagram illustrating the model of the moving breakdown in liquids. (a) Geometrical structure of a (half) Gaussian beam with focus at z = 0. Shaded areas illustrate the spatial distribution co the power at two distinct locations along the beam axis. (b) In correspondence with some axial locations, gives the temporal shape of a laser pulse whose peak power is assumed to exceed, at z = 0, the threshold power required for breakdown in the medium by a factor of 2 (β = 2). The left edge of each shaded area in (b) is the instant of occurrence of breakdown ti corresponding to the axial location zi. At z = zmax, breakdown occurs only in correspondence with the peak of the pulse (t = 0). Beyond that point, no breakdown occurs. The curve of starting time is the locus of all points t(z).

Fig. 6
Fig. 6

Plot of the theoretical curves for plasma starting times, expressed as the function t(z) − t0, i.e., with origin corresponding to the starting time at z = 0, obtained with the model of moving breakdown for different values of the ratio β = Pmax/Pth. Laser parameters are as in Fig. 2. Superimposed on each curve is the experimental curve of plasma starting time derived from the streak photographs of Fig. 2, suitably scaled.

Fig. 7
Fig. 7

(a) Dependence of the maximum extension, zmax, of the plasma column toward the laser source, on the ratio β for the two experimental focusing conditions. Solid lines are theoretical curves of zmax vs β [Eq. (5)]. (■): distilled water, standard focusing; (□): distilled water, tight focusing; (▲): tap water, standard focusing; (△): tap water, tight focusing. (b) Comparison between maximum extent of plasmas produced in distilled water (left) and tap water (right) at equal β values of 5.0 (corresponding to the shaded region in (a).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P ( t ) = P max · { exp [ - 2 ( t / 2 A ) 2 ] } .
I ( z , t ) = P ( t ) / [ π w 2 ( z ) ] ,
I ( z , t ) = P max π w 2 ( z ) { exp [ - 2 ( t / 2 A ) 2 ] } .
t ( z ) = - A { 2 ln [ β ( 1 + z 2 / z 0 2 ) - 1 ] } 1 / 2 .
z max = z 0 ( β - 1 ) 1 / 2
z ( t ) = z 0 { β exp [ - 2 ( t / 2 A ) 2 ] - 1 } 1 / 2 .

Metrics