Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Hariharan, Optical Interferometry (Academic, New York, 1985), p. 134.
  2. M. P. Rimmer, J. C. Wyant, “Evaluation of Large Aberrations Using a Lateral-Shear Interferometer Having Variable Shear,” Appl. Opt. 14, 142 (1975).
    [PubMed]
  3. D. Malacara, “Radial, Rotational and Reversal Shear Interferometers,” in Optical Shop Testing, D. Malacara, Ed. (Wiley, New York, 1978), p. 149.
  4. P. Hariharan, B. F. Oreb, Zhou Wanzhi, “Measurement of Aspheric Surfaces Using a Microcomputer-Controlled Digital Radial-Shear Interferometer,” Opt. Acta 31, 989 (1984).
    [CrossRef]

1984 (1)

P. Hariharan, B. F. Oreb, Zhou Wanzhi, “Measurement of Aspheric Surfaces Using a Microcomputer-Controlled Digital Radial-Shear Interferometer,” Opt. Acta 31, 989 (1984).
[CrossRef]

1975 (1)

Hariharan, P.

P. Hariharan, B. F. Oreb, Zhou Wanzhi, “Measurement of Aspheric Surfaces Using a Microcomputer-Controlled Digital Radial-Shear Interferometer,” Opt. Acta 31, 989 (1984).
[CrossRef]

P. Hariharan, Optical Interferometry (Academic, New York, 1985), p. 134.

Malacara, D.

D. Malacara, “Radial, Rotational and Reversal Shear Interferometers,” in Optical Shop Testing, D. Malacara, Ed. (Wiley, New York, 1978), p. 149.

Oreb, B. F.

P. Hariharan, B. F. Oreb, Zhou Wanzhi, “Measurement of Aspheric Surfaces Using a Microcomputer-Controlled Digital Radial-Shear Interferometer,” Opt. Acta 31, 989 (1984).
[CrossRef]

Rimmer, M. P.

Wanzhi, Zhou

P. Hariharan, B. F. Oreb, Zhou Wanzhi, “Measurement of Aspheric Surfaces Using a Microcomputer-Controlled Digital Radial-Shear Interferometer,” Opt. Acta 31, 989 (1984).
[CrossRef]

Wyant, J. C.

Appl. Opt. (1)

Opt. Acta (1)

P. Hariharan, B. F. Oreb, Zhou Wanzhi, “Measurement of Aspheric Surfaces Using a Microcomputer-Controlled Digital Radial-Shear Interferometer,” Opt. Acta 31, 989 (1984).
[CrossRef]

Other (2)

P. Hariharan, Optical Interferometry (Academic, New York, 1985), p. 134.

D. Malacara, “Radial, Rotational and Reversal Shear Interferometers,” in Optical Shop Testing, D. Malacara, Ed. (Wiley, New York, 1978), p. 149.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Images of the pupil in a lateral shearing interferometer.

Fig. 2
Fig. 2

Sensitivity of a lateral shearing interferometer as a function of the spatial frequency in the pupil plane.

Fig. 3
Fig. 3

Images of the pupil in a radial shearing interferometer.

Fig. 4
Fig. 4

Sensitivity of a radial shearing interferometer as a function of the order of the aberration terms.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Δ W ( x , y ) = W ( x + S / 2 , y ) - W ( x - S / 2 , y ) .
Δ W ( x , y ) = [ ( / x ) W ( x , y ) ] Δ S .
W ( x , y ) = n = 0 k m = 0 k B n m x m y n - m
Δ W S = n = 0 k - 1 m = 0 n C n m x m y n - m ,
Δ W T = n = 0 k - 1 m = 0 n D n m x m y n - m ,
C n m = j = 1 k - n ( j + m j ) S j B j + n , j + m ,
D n m = j = 1 k - n ( j + n - m j ) T j B j + n , m .
Δ W ( x , y ) = W ( x , y ) * [ δ ( x + S / 2 ) - δ ( x - S / 2 ) ] .
Δ w ( ξ , η ) = W ( ξ , η ) · 2 i sin π S ξ ,
Δ w ( ξ , η ) = W ( ξ , η ) · 2 i π S ξ .
ξ = m / S ,
W ( ρ , θ ) = k = 0 n l = 0 k ρ k ( A k l cos l θ + B k l sin l θ ) ,
Δ W ( ρ , θ ) = k = 0 n l = 0 k ρ k ( A k l cos l θ + B k l sin l θ ) ,
A k l = ( 1 - μ k ) A k l , B k l = ( 1 - μ k ) B k l .
σ k l = 1 - μ k

Metrics