Abstract

A sensitive thermoluminescence (TL) emission spectrometer based on Fourier transform spectroscopy is described. It employs a modified scanning Twyman-Green interferometer with photomultiplier detection in a photon-counting mode. The etendue is 180π mm2, and it covers the 350–600-nm wavelength range. The output can be displayed either as a 3-D isometric plot of intensity vs temperature and wavelength, as a contour diagram, or as a conventional TL glow curve of intensity vs temperature. It is sufficiently sensitive to record thermoluminescence spectra of dosimeter phosphors and minerals for thermoluminescence dating at levels corresponding to those found during actual use as radiation monitors or in dating. Examples of actual spectra are given.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Aitken, Thermoluminescence Dating (Academic, London, 1985).
  2. Y. S. Horowitz, Thermoluminescence and Thermoluminescent Dosimetry (CRC Press, Boca Raton, FL, 1984).
  3. S. W. S. McKeever, Thermoluminescence of Solids (Cambridge U.P., London, 1985).
    [CrossRef]
  4. G. A. Wagner, M. J. Aitken, A. K. Singhvi, A. Mangini, V. Mejdahl, E. Pernicka, S. A. Durrani, Eds., Proceedings, Fourth International Specialist Seminar on Thermoluminescence and Electron Spin Resonance Dating, Nucl. Tracks10, Nos. 4–6 (1985).
  5. A. M. Harris, J. H. Jackson, “A Rapid Scanning Spectrometer for the Region 200–850 nm: Application of Thermoluminescent Emission Spectra,” J. Phys. E 3, 374 (1970).
    [CrossRef]
  6. P. L. Mattern, K. Lengweiler, P. W. Levy, “Apparatus for the Simultaneous Determination of Thermoluminescent Intensity and Spectral Distribution,” Mod. Geol. 2, 293 (1971).
  7. P. W. Levy, “Thermoluminescence Studies Having Applications to Geology and Archaeometry,” PACT 3, 466 (1979).
  8. H. E. Jensen, J. R. Prescott, “A Fourier Transform Spectrometer for the Measurement of Thermoluminescence Emission Spectra,” PACT 6, 542 (1982).
  9. S. W. S. McKeever, K. Ahmed, P. J. Chandler, J. A. Strain, H. M. Rendell, P. D. Townsend, “Analysis of Emission Spectra of Meteorites During Thermoluminescence Measurements,” PACT 9, 187 (1983).
  10. G. V. Bakas, “A New Optical Multichannel Analyser Using a Charge Coupled Device as Detector for Thermoluminescence Emission Measurements,” Radiat. Prot. Dosimetry 9, 301 (1984).
  11. K. Imaeda et al., “Spatial Distribution Readout System of Thermoluminescence Sheets,” Nucl. Instrum. Methods Phys. Res. A 241, 567 (1985).
    [CrossRef]
  12. P. B. Fellgett, Ph.D. Thesis, U. Cambridge, England (1951).
  13. A. J. Walton, “An Image-Intensifier Spectrograph for Thermoluminescence Studies,” PACT 6, 524 (1982).
  14. D. J. Huntley, D. I. Godfrey-Smith, M. L. W. Thewalt, G. W. Berger, “Thermoluminescence Spectra of Some Mineral Samples Relevant to Thermoluminescence Dating,” J. Luminesc. 39, 123 (1988).
    [CrossRef]
  15. I. K. Bailiff, D. A. Morris, M. J. Aitken, “A Rapid Scanning Interference Spectrometer: Application to Low-Level Thermoluminescence Emission,” J. Phys. E 10, 1156 (1977).
    [CrossRef]
  16. P. Jacquinot, “The Luminosity of Spectrometers with Prisms, Gratings or Fabry-Perot Etalons,” J. Opt. Soc. Am. 44, 761 (1954).
    [CrossRef]
  17. W. H. Steel, “Interferometers Without Collimation for Fourier Spectroscopy,” J Opt. Soc. Am. 54, 151 (1964).
    [CrossRef]
  18. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972).
  19. J. Chamberlain, The Principles of Interferometric Spectroscopy, G. W. Chantry, N. W. B. Stone, Eds. (Wiley, Chichester, 1979).
  20. W. H. Steel, Interferometry (Cambridge U.P., Cambridge, 1983).
  21. R. A. Akber, G. B. Robertson, J. R. Prescott, “The 100°C Thermoluminescence Emission from High-Fired Ceramics: a Three Dimensional View,” Nucl. Tracks (in press) (1988).
  22. P. J. Fox, R. A. Akber, J. R. Prescott, “Spectral Characteristics of Six Phosphors Used in Thermoluminescence Dosimetry,” J. Phys. D. 21, 189 (1988).
    [CrossRef]
  23. R. A. Akber, J. R. Prescott, “Thermoluminescence in Some Feldspars: Early Results from Studies of Spectra,” Nucl. Tracks 10, 575 (1985).
  24. P. H. Ribbe, Ed., Feldspar Mineralogy (Mineralogical Society of America, Washington, DC, 1983).
  25. W. L. Brown, Ed., Feldspars and Feldspathoids—Structures, Properties and Occurrences (Riedel, Dordrecht, 1984).

1988

D. J. Huntley, D. I. Godfrey-Smith, M. L. W. Thewalt, G. W. Berger, “Thermoluminescence Spectra of Some Mineral Samples Relevant to Thermoluminescence Dating,” J. Luminesc. 39, 123 (1988).
[CrossRef]

P. J. Fox, R. A. Akber, J. R. Prescott, “Spectral Characteristics of Six Phosphors Used in Thermoluminescence Dosimetry,” J. Phys. D. 21, 189 (1988).
[CrossRef]

1985

R. A. Akber, J. R. Prescott, “Thermoluminescence in Some Feldspars: Early Results from Studies of Spectra,” Nucl. Tracks 10, 575 (1985).

K. Imaeda et al., “Spatial Distribution Readout System of Thermoluminescence Sheets,” Nucl. Instrum. Methods Phys. Res. A 241, 567 (1985).
[CrossRef]

1984

G. V. Bakas, “A New Optical Multichannel Analyser Using a Charge Coupled Device as Detector for Thermoluminescence Emission Measurements,” Radiat. Prot. Dosimetry 9, 301 (1984).

1983

S. W. S. McKeever, K. Ahmed, P. J. Chandler, J. A. Strain, H. M. Rendell, P. D. Townsend, “Analysis of Emission Spectra of Meteorites During Thermoluminescence Measurements,” PACT 9, 187 (1983).

1982

A. J. Walton, “An Image-Intensifier Spectrograph for Thermoluminescence Studies,” PACT 6, 524 (1982).

H. E. Jensen, J. R. Prescott, “A Fourier Transform Spectrometer for the Measurement of Thermoluminescence Emission Spectra,” PACT 6, 542 (1982).

1979

P. W. Levy, “Thermoluminescence Studies Having Applications to Geology and Archaeometry,” PACT 3, 466 (1979).

1977

I. K. Bailiff, D. A. Morris, M. J. Aitken, “A Rapid Scanning Interference Spectrometer: Application to Low-Level Thermoluminescence Emission,” J. Phys. E 10, 1156 (1977).
[CrossRef]

1971

P. L. Mattern, K. Lengweiler, P. W. Levy, “Apparatus for the Simultaneous Determination of Thermoluminescent Intensity and Spectral Distribution,” Mod. Geol. 2, 293 (1971).

1970

A. M. Harris, J. H. Jackson, “A Rapid Scanning Spectrometer for the Region 200–850 nm: Application of Thermoluminescent Emission Spectra,” J. Phys. E 3, 374 (1970).
[CrossRef]

1964

W. H. Steel, “Interferometers Without Collimation for Fourier Spectroscopy,” J Opt. Soc. Am. 54, 151 (1964).
[CrossRef]

1954

Ahmed, K.

S. W. S. McKeever, K. Ahmed, P. J. Chandler, J. A. Strain, H. M. Rendell, P. D. Townsend, “Analysis of Emission Spectra of Meteorites During Thermoluminescence Measurements,” PACT 9, 187 (1983).

Aitken, M. J.

I. K. Bailiff, D. A. Morris, M. J. Aitken, “A Rapid Scanning Interference Spectrometer: Application to Low-Level Thermoluminescence Emission,” J. Phys. E 10, 1156 (1977).
[CrossRef]

M. J. Aitken, Thermoluminescence Dating (Academic, London, 1985).

Akber, R. A.

P. J. Fox, R. A. Akber, J. R. Prescott, “Spectral Characteristics of Six Phosphors Used in Thermoluminescence Dosimetry,” J. Phys. D. 21, 189 (1988).
[CrossRef]

R. A. Akber, J. R. Prescott, “Thermoluminescence in Some Feldspars: Early Results from Studies of Spectra,” Nucl. Tracks 10, 575 (1985).

R. A. Akber, G. B. Robertson, J. R. Prescott, “The 100°C Thermoluminescence Emission from High-Fired Ceramics: a Three Dimensional View,” Nucl. Tracks (in press) (1988).

Bailiff, I. K.

I. K. Bailiff, D. A. Morris, M. J. Aitken, “A Rapid Scanning Interference Spectrometer: Application to Low-Level Thermoluminescence Emission,” J. Phys. E 10, 1156 (1977).
[CrossRef]

Bakas, G. V.

G. V. Bakas, “A New Optical Multichannel Analyser Using a Charge Coupled Device as Detector for Thermoluminescence Emission Measurements,” Radiat. Prot. Dosimetry 9, 301 (1984).

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972).

Berger, G. W.

D. J. Huntley, D. I. Godfrey-Smith, M. L. W. Thewalt, G. W. Berger, “Thermoluminescence Spectra of Some Mineral Samples Relevant to Thermoluminescence Dating,” J. Luminesc. 39, 123 (1988).
[CrossRef]

Chamberlain, J.

J. Chamberlain, The Principles of Interferometric Spectroscopy, G. W. Chantry, N. W. B. Stone, Eds. (Wiley, Chichester, 1979).

Chandler, P. J.

S. W. S. McKeever, K. Ahmed, P. J. Chandler, J. A. Strain, H. M. Rendell, P. D. Townsend, “Analysis of Emission Spectra of Meteorites During Thermoluminescence Measurements,” PACT 9, 187 (1983).

Fellgett, P. B.

P. B. Fellgett, Ph.D. Thesis, U. Cambridge, England (1951).

Fox, P. J.

P. J. Fox, R. A. Akber, J. R. Prescott, “Spectral Characteristics of Six Phosphors Used in Thermoluminescence Dosimetry,” J. Phys. D. 21, 189 (1988).
[CrossRef]

Godfrey-Smith, D. I.

D. J. Huntley, D. I. Godfrey-Smith, M. L. W. Thewalt, G. W. Berger, “Thermoluminescence Spectra of Some Mineral Samples Relevant to Thermoluminescence Dating,” J. Luminesc. 39, 123 (1988).
[CrossRef]

Harris, A. M.

A. M. Harris, J. H. Jackson, “A Rapid Scanning Spectrometer for the Region 200–850 nm: Application of Thermoluminescent Emission Spectra,” J. Phys. E 3, 374 (1970).
[CrossRef]

Horowitz, Y. S.

Y. S. Horowitz, Thermoluminescence and Thermoluminescent Dosimetry (CRC Press, Boca Raton, FL, 1984).

Huntley, D. J.

D. J. Huntley, D. I. Godfrey-Smith, M. L. W. Thewalt, G. W. Berger, “Thermoluminescence Spectra of Some Mineral Samples Relevant to Thermoluminescence Dating,” J. Luminesc. 39, 123 (1988).
[CrossRef]

Imaeda, K.

K. Imaeda et al., “Spatial Distribution Readout System of Thermoluminescence Sheets,” Nucl. Instrum. Methods Phys. Res. A 241, 567 (1985).
[CrossRef]

Jackson, J. H.

A. M. Harris, J. H. Jackson, “A Rapid Scanning Spectrometer for the Region 200–850 nm: Application of Thermoluminescent Emission Spectra,” J. Phys. E 3, 374 (1970).
[CrossRef]

Jacquinot, P.

Jensen, H. E.

H. E. Jensen, J. R. Prescott, “A Fourier Transform Spectrometer for the Measurement of Thermoluminescence Emission Spectra,” PACT 6, 542 (1982).

Lengweiler, K.

P. L. Mattern, K. Lengweiler, P. W. Levy, “Apparatus for the Simultaneous Determination of Thermoluminescent Intensity and Spectral Distribution,” Mod. Geol. 2, 293 (1971).

Levy, P. W.

P. W. Levy, “Thermoluminescence Studies Having Applications to Geology and Archaeometry,” PACT 3, 466 (1979).

P. L. Mattern, K. Lengweiler, P. W. Levy, “Apparatus for the Simultaneous Determination of Thermoluminescent Intensity and Spectral Distribution,” Mod. Geol. 2, 293 (1971).

Mattern, P. L.

P. L. Mattern, K. Lengweiler, P. W. Levy, “Apparatus for the Simultaneous Determination of Thermoluminescent Intensity and Spectral Distribution,” Mod. Geol. 2, 293 (1971).

McKeever, S. W. S.

S. W. S. McKeever, K. Ahmed, P. J. Chandler, J. A. Strain, H. M. Rendell, P. D. Townsend, “Analysis of Emission Spectra of Meteorites During Thermoluminescence Measurements,” PACT 9, 187 (1983).

S. W. S. McKeever, Thermoluminescence of Solids (Cambridge U.P., London, 1985).
[CrossRef]

Morris, D. A.

I. K. Bailiff, D. A. Morris, M. J. Aitken, “A Rapid Scanning Interference Spectrometer: Application to Low-Level Thermoluminescence Emission,” J. Phys. E 10, 1156 (1977).
[CrossRef]

Prescott, J. R.

P. J. Fox, R. A. Akber, J. R. Prescott, “Spectral Characteristics of Six Phosphors Used in Thermoluminescence Dosimetry,” J. Phys. D. 21, 189 (1988).
[CrossRef]

R. A. Akber, J. R. Prescott, “Thermoluminescence in Some Feldspars: Early Results from Studies of Spectra,” Nucl. Tracks 10, 575 (1985).

H. E. Jensen, J. R. Prescott, “A Fourier Transform Spectrometer for the Measurement of Thermoluminescence Emission Spectra,” PACT 6, 542 (1982).

R. A. Akber, G. B. Robertson, J. R. Prescott, “The 100°C Thermoluminescence Emission from High-Fired Ceramics: a Three Dimensional View,” Nucl. Tracks (in press) (1988).

Rendell, H. M.

S. W. S. McKeever, K. Ahmed, P. J. Chandler, J. A. Strain, H. M. Rendell, P. D. Townsend, “Analysis of Emission Spectra of Meteorites During Thermoluminescence Measurements,” PACT 9, 187 (1983).

Robertson, G. B.

R. A. Akber, G. B. Robertson, J. R. Prescott, “The 100°C Thermoluminescence Emission from High-Fired Ceramics: a Three Dimensional View,” Nucl. Tracks (in press) (1988).

Steel, W. H.

W. H. Steel, “Interferometers Without Collimation for Fourier Spectroscopy,” J Opt. Soc. Am. 54, 151 (1964).
[CrossRef]

W. H. Steel, Interferometry (Cambridge U.P., Cambridge, 1983).

Strain, J. A.

S. W. S. McKeever, K. Ahmed, P. J. Chandler, J. A. Strain, H. M. Rendell, P. D. Townsend, “Analysis of Emission Spectra of Meteorites During Thermoluminescence Measurements,” PACT 9, 187 (1983).

Thewalt, M. L. W.

D. J. Huntley, D. I. Godfrey-Smith, M. L. W. Thewalt, G. W. Berger, “Thermoluminescence Spectra of Some Mineral Samples Relevant to Thermoluminescence Dating,” J. Luminesc. 39, 123 (1988).
[CrossRef]

Townsend, P. D.

S. W. S. McKeever, K. Ahmed, P. J. Chandler, J. A. Strain, H. M. Rendell, P. D. Townsend, “Analysis of Emission Spectra of Meteorites During Thermoluminescence Measurements,” PACT 9, 187 (1983).

Walton, A. J.

A. J. Walton, “An Image-Intensifier Spectrograph for Thermoluminescence Studies,” PACT 6, 524 (1982).

J Opt. Soc. Am.

W. H. Steel, “Interferometers Without Collimation for Fourier Spectroscopy,” J Opt. Soc. Am. 54, 151 (1964).
[CrossRef]

J. Luminesc.

D. J. Huntley, D. I. Godfrey-Smith, M. L. W. Thewalt, G. W. Berger, “Thermoluminescence Spectra of Some Mineral Samples Relevant to Thermoluminescence Dating,” J. Luminesc. 39, 123 (1988).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. D.

P. J. Fox, R. A. Akber, J. R. Prescott, “Spectral Characteristics of Six Phosphors Used in Thermoluminescence Dosimetry,” J. Phys. D. 21, 189 (1988).
[CrossRef]

J. Phys. E

I. K. Bailiff, D. A. Morris, M. J. Aitken, “A Rapid Scanning Interference Spectrometer: Application to Low-Level Thermoluminescence Emission,” J. Phys. E 10, 1156 (1977).
[CrossRef]

A. M. Harris, J. H. Jackson, “A Rapid Scanning Spectrometer for the Region 200–850 nm: Application of Thermoluminescent Emission Spectra,” J. Phys. E 3, 374 (1970).
[CrossRef]

Mod. Geol.

P. L. Mattern, K. Lengweiler, P. W. Levy, “Apparatus for the Simultaneous Determination of Thermoluminescent Intensity and Spectral Distribution,” Mod. Geol. 2, 293 (1971).

Nucl. Instrum. Methods Phys. Res. A

K. Imaeda et al., “Spatial Distribution Readout System of Thermoluminescence Sheets,” Nucl. Instrum. Methods Phys. Res. A 241, 567 (1985).
[CrossRef]

Nucl. Tracks

R. A. Akber, J. R. Prescott, “Thermoluminescence in Some Feldspars: Early Results from Studies of Spectra,” Nucl. Tracks 10, 575 (1985).

PACT

A. J. Walton, “An Image-Intensifier Spectrograph for Thermoluminescence Studies,” PACT 6, 524 (1982).

P. W. Levy, “Thermoluminescence Studies Having Applications to Geology and Archaeometry,” PACT 3, 466 (1979).

H. E. Jensen, J. R. Prescott, “A Fourier Transform Spectrometer for the Measurement of Thermoluminescence Emission Spectra,” PACT 6, 542 (1982).

S. W. S. McKeever, K. Ahmed, P. J. Chandler, J. A. Strain, H. M. Rendell, P. D. Townsend, “Analysis of Emission Spectra of Meteorites During Thermoluminescence Measurements,” PACT 9, 187 (1983).

Radiat. Prot. Dosimetry

G. V. Bakas, “A New Optical Multichannel Analyser Using a Charge Coupled Device as Detector for Thermoluminescence Emission Measurements,” Radiat. Prot. Dosimetry 9, 301 (1984).

Other

M. J. Aitken, Thermoluminescence Dating (Academic, London, 1985).

Y. S. Horowitz, Thermoluminescence and Thermoluminescent Dosimetry (CRC Press, Boca Raton, FL, 1984).

S. W. S. McKeever, Thermoluminescence of Solids (Cambridge U.P., London, 1985).
[CrossRef]

G. A. Wagner, M. J. Aitken, A. K. Singhvi, A. Mangini, V. Mejdahl, E. Pernicka, S. A. Durrani, Eds., Proceedings, Fourth International Specialist Seminar on Thermoluminescence and Electron Spin Resonance Dating, Nucl. Tracks10, Nos. 4–6 (1985).

P. B. Fellgett, Ph.D. Thesis, U. Cambridge, England (1951).

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972).

J. Chamberlain, The Principles of Interferometric Spectroscopy, G. W. Chantry, N. W. B. Stone, Eds. (Wiley, Chichester, 1979).

W. H. Steel, Interferometry (Cambridge U.P., Cambridge, 1983).

R. A. Akber, G. B. Robertson, J. R. Prescott, “The 100°C Thermoluminescence Emission from High-Fired Ceramics: a Three Dimensional View,” Nucl. Tracks (in press) (1988).

P. H. Ribbe, Ed., Feldspar Mineralogy (Mineralogical Society of America, Washington, DC, 1983).

W. L. Brown, Ed., Feldspars and Feldspathoids—Structures, Properties and Occurrences (Riedel, Dordrecht, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the optical system. Component details: (A) Input optics: S, sample ≃ 1 cm2; L1, aspheric lens, BK7, ϕ = 50-mm f.l. = 37.5mm; FS, field stops (optional); F, filters, ND1-4, colored or neutral (optional); L2, field lens, BK7, ϕ = 50-mm f.l. = 200 mm; M, front surface mirror, coating Al; L3, Fresnel lens, acrylic, ϕ = 81-mm f.l. = 102 mm. (B) Interferometer: M1, M2 = fixed movable mirrors, ϕ = 38 mm, coating Al; B, beam splitter and compensator, BK7, coating Al. (C) Output optics: L4, two Fresnel lenses, acrylic, ϕ = 81-mm f.l. (combined) = 39 mm; PM, photomultiplier EMI 9635QA.

Fig. 2
Fig. 2

(a) Interferogram corresponding to a broadband light source with nonconstant spectral intensity. The smooth line is a second-order polynomial fit to the average data. (b) Spectrum corresponding to the uncorrected interferogram. (c) Lower: spectrum corresponding to the corrected interferogram. Upper: spectrum for an identical broadband source with constant intensity, slightly offset to separate the curves.

Fig. 3
Fig. 3

Thermoluminescence emission spectrum of CaSO4:Dy dosimeter phosphor at a dose of 1 mGy.

Fig. 4
Fig. 4

Three methods of displaying data from Mg2SiO4:Tb for a dose of 1 Gy: (a) isometric 3-D plot; (b) contour diagram; (c) conventional glow curve.

Fig. 5
Fig. 5

Spectra of four alkali feldspars: (a) orthoclase (K-rich); (b) albite (Na-rich); (c) sodic sanidine (intermediate K-Na composition); (d) moonstone.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( x ) = C - B ( k ) exp ( i k x ) d k + 1 2 I ( 0 ) ,
R = k / Δ k = 2 π / Ω .
I ( x ) x = ½ I ( 0 ) .
B ( k ) = C - [ I ( x ) - I ( ) ] exp ( - i k x ) d x ,

Metrics