Abstract

We have analyzed the principal sources of noise in a commercially available 2-D scanning microdensitometer which we use to estimate the noise power spectra of radiographic films. Two kinds of noise have been observed. One source, associated with the glass platen of the instrument, is correlated from scan to scan. This source of noise limits our ability to measure the NPS of film samples at low sample optical densities. The other major noise source is uncorrelated from scan to scan and increases exponentially with sample optical density. We have measured both of these component noise sources as well as the total instrument noise as a function of instrument density and spatial frequency. A method for minimizing the effects of instrument noise on estimates of the noise power of film samples is described and demonstrated.

© 1988 Optical Society of America

Full Article  |  PDF Article
Related Articles
Analysis of the detective quantum efficiency of a radiographic screen–film combination

Phillip C. Bunch, Kenneth E. Huff, and Richard Van Metter
J. Opt. Soc. Am. A 4(5) 902-909 (1987)

Radiographic screen–film noise power spectrum: variation with microdensitometer slit length

John M. Sandrik and Robert F. Wagner
Appl. Opt. 20(16) 2795-2798 (1981)

Radiographic screen–film noise power spectrum: calibration and intercomparison

John M. Sandrik, Robert F. Wagner, and Kenneth M. Hanson
Appl. Opt. 21(19) 3597-3601 (1982)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription