Abstract

We present and demonstrate a set of dynamic optical interconnects which are based on the double phase conjugate mirror with photorefractive wave mixing. These devices are bidirectional, self-adjusting, and controllable in real time. Uses in various interconnection modes are given.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. May 87 special issue of the IEEE Commun. Mag.
  2. Oct. 86 special issue of Opt. Eng.
  3. A. A. Sawchuk, T. C. Strand, “Digital Optical Computing,” Proc. IEEE 72, 758 (1984); “Optical Crossbar Network,” Computer50 (1987).
    [CrossRef]
  4. J. W. Goodman, F. I. Leonberger, S. Y. King, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
    [CrossRef]
  5. L. A. Bergman et al., “Holographic Optical Interconnects for VLSI,” Opt. Eng. 25, 1109 (1986).
    [CrossRef]
  6. J. A. Neff, “Major Initiatives for Optical Computing,” Opt. Eng. 26, 003 (1987).
    [CrossRef]
  7. E. Marom, N. Konforti, “Programmable Optical Interconnects,” Proc. Soc. Photo-Opt. Instrum. Eng. 700, 209 (1986).
  8. M. Cronin Golomb, B. Fischer, J. O. White, A. Yariv, “Theory and Applications of Four Wave Mixing in Photorefractive Media,” IEEE J. Quantum Electron. QE-20, 12 (1984); J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, “Coherent Oscillation by Self-Induced Gratings in the Photorefractive Crystal BaTiO3,” Appl. Phys. Lett. 40, 450 (1982).
    [CrossRef]
  9. S. Weiss, S. Sternklar, B. Fischer, “Double Phase Conjugate Mirror: Analysis, Demonstration and Applications,” Opt. Lett. 12, 114 (1985); S. Sternklar, S. Weiss, M. Segev, B. Fischer, “Beam Coupling and Locking of Lasers Using Photorefractive Four-Wave Mixing,” Opt. Lett. 11, 528 (1986).
    [CrossRef] [PubMed]
  10. B. Fischer, S. Sternklar, “Self Bragg Matched Beam Steering Using the Double Color Pumped Photorefractive Oscillator,” Appl. Phys. Lett. 51, 74 (1987); S. Sternklar, B. Fischer, “Double-Color-Pumped Photorefractive Four Wave Mixing Oscillator and Image Color Conversion,” Opt. Lett. 12, 711 (1987).
    [CrossRef] [PubMed]
  11. S. Sternklar, S. Weiss, B. Fischer, “Optical Information Processing with the Double Phase Conjugate Mirror,” Opt. Eng. 26, 423 (1987); B. Fischer, S. Weiss, S. Sternklar, “Spatial Light Modulation and Filtering Effects in Photorefractive Wave-Mixing,” Appl. Phys. Lett. 50, 483 (1987).
    [CrossRef]
  12. M. Cronin-Golomb, A. M. Biernacki, H. Kong, C. Lin, “Programmable Optical Interconnection Using a Double Phase Conjugate Mirror,” J. Opt. Soc. Am. A 4(13), p12 (1987).
  13. H. J. Caulfield, J. Shamir, Q. He, “Flexible Two-Way Optical Interconnects in Layered Computers,” Appl. Opt. 26, 2291 (1987); Q. He, J. G. Duthie, J. Shamir, H. J. Caulfield, “Optical Parallel Communication with Photorefractive Materials,” in Technical Digest, Topical Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, DC, 1987).
    [CrossRef] [PubMed]
  14. G. Pauliat, G. Roosen, “Large Scale Interconnections Using Dynamic Gratings,” Proc. Soc. Photo-Opt. Instrum. Eng. 700, 202 (1986).
  15. S. Sternklar, S. Weiss, M. Segev, B. Fischer, “Mach-Zehnder Interferometer with Multimode Fibers Using the Double Phase Conjugate Mirror,” Appl. Opt. 25, 4518 (1986).
    [CrossRef] [PubMed]
  16. D. M. Gookin, “Optical Switch Using the Photorefractive Effect and Ferroelectric Polarization Reversal,” Opt. Lett. 12, 196 (1987).
    [CrossRef] [PubMed]
  17. Y. Fainman, C. C. Guest, S. H. Lee, “Optical Digital Logic Operations by Two-Beam Coupling in Photorefractive Material,” Appl. Opt. 25, 1598 (1986).
    [CrossRef] [PubMed]
  18. Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, “Photorefractive Incoherent-To-Coherent Optical Converter,” Appl. Opt. 22, 3665 (1983).
    [CrossRef] [PubMed]
  19. J. W. Goodman, A. R. Dias, L. M. Woody, “Fully Parallel, High-Speed Incoherent Optical Method for Performing Discrete Fourier Transforms,” Opt. Lett. 2, 1 (1978).
    [CrossRef] [PubMed]
  20. See, for example, H. D. Hendricks, “Wavelength Division Multiplexing,” Proc. Soc. Photo-Opt. Instrum. Eng. 512, 130 (1984).

1987

J. A. Neff, “Major Initiatives for Optical Computing,” Opt. Eng. 26, 003 (1987).
[CrossRef]

B. Fischer, S. Sternklar, “Self Bragg Matched Beam Steering Using the Double Color Pumped Photorefractive Oscillator,” Appl. Phys. Lett. 51, 74 (1987); S. Sternklar, B. Fischer, “Double-Color-Pumped Photorefractive Four Wave Mixing Oscillator and Image Color Conversion,” Opt. Lett. 12, 711 (1987).
[CrossRef] [PubMed]

S. Sternklar, S. Weiss, B. Fischer, “Optical Information Processing with the Double Phase Conjugate Mirror,” Opt. Eng. 26, 423 (1987); B. Fischer, S. Weiss, S. Sternklar, “Spatial Light Modulation and Filtering Effects in Photorefractive Wave-Mixing,” Appl. Phys. Lett. 50, 483 (1987).
[CrossRef]

M. Cronin-Golomb, A. M. Biernacki, H. Kong, C. Lin, “Programmable Optical Interconnection Using a Double Phase Conjugate Mirror,” J. Opt. Soc. Am. A 4(13), p12 (1987).

D. M. Gookin, “Optical Switch Using the Photorefractive Effect and Ferroelectric Polarization Reversal,” Opt. Lett. 12, 196 (1987).
[CrossRef] [PubMed]

H. J. Caulfield, J. Shamir, Q. He, “Flexible Two-Way Optical Interconnects in Layered Computers,” Appl. Opt. 26, 2291 (1987); Q. He, J. G. Duthie, J. Shamir, H. J. Caulfield, “Optical Parallel Communication with Photorefractive Materials,” in Technical Digest, Topical Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, DC, 1987).
[CrossRef] [PubMed]

1986

L. A. Bergman et al., “Holographic Optical Interconnects for VLSI,” Opt. Eng. 25, 1109 (1986).
[CrossRef]

Y. Fainman, C. C. Guest, S. H. Lee, “Optical Digital Logic Operations by Two-Beam Coupling in Photorefractive Material,” Appl. Opt. 25, 1598 (1986).
[CrossRef] [PubMed]

S. Sternklar, S. Weiss, M. Segev, B. Fischer, “Mach-Zehnder Interferometer with Multimode Fibers Using the Double Phase Conjugate Mirror,” Appl. Opt. 25, 4518 (1986).
[CrossRef] [PubMed]

G. Pauliat, G. Roosen, “Large Scale Interconnections Using Dynamic Gratings,” Proc. Soc. Photo-Opt. Instrum. Eng. 700, 202 (1986).

E. Marom, N. Konforti, “Programmable Optical Interconnects,” Proc. Soc. Photo-Opt. Instrum. Eng. 700, 209 (1986).

1985

1984

M. Cronin Golomb, B. Fischer, J. O. White, A. Yariv, “Theory and Applications of Four Wave Mixing in Photorefractive Media,” IEEE J. Quantum Electron. QE-20, 12 (1984); J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, “Coherent Oscillation by Self-Induced Gratings in the Photorefractive Crystal BaTiO3,” Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

A. A. Sawchuk, T. C. Strand, “Digital Optical Computing,” Proc. IEEE 72, 758 (1984); “Optical Crossbar Network,” Computer50 (1987).
[CrossRef]

J. W. Goodman, F. I. Leonberger, S. Y. King, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

See, for example, H. D. Hendricks, “Wavelength Division Multiplexing,” Proc. Soc. Photo-Opt. Instrum. Eng. 512, 130 (1984).

1983

1978

Athale, R. A.

J. W. Goodman, F. I. Leonberger, S. Y. King, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Bergman, L. A.

L. A. Bergman et al., “Holographic Optical Interconnects for VLSI,” Opt. Eng. 25, 1109 (1986).
[CrossRef]

Biernacki, A. M.

M. Cronin-Golomb, A. M. Biernacki, H. Kong, C. Lin, “Programmable Optical Interconnection Using a Double Phase Conjugate Mirror,” J. Opt. Soc. Am. A 4(13), p12 (1987).

Caulfield, H. J.

Cronin Golomb, M.

M. Cronin Golomb, B. Fischer, J. O. White, A. Yariv, “Theory and Applications of Four Wave Mixing in Photorefractive Media,” IEEE J. Quantum Electron. QE-20, 12 (1984); J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, “Coherent Oscillation by Self-Induced Gratings in the Photorefractive Crystal BaTiO3,” Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

Cronin-Golomb, M.

M. Cronin-Golomb, A. M. Biernacki, H. Kong, C. Lin, “Programmable Optical Interconnection Using a Double Phase Conjugate Mirror,” J. Opt. Soc. Am. A 4(13), p12 (1987).

Dias, A. R.

Fainman, Y.

Fischer, B.

S. Sternklar, S. Weiss, B. Fischer, “Optical Information Processing with the Double Phase Conjugate Mirror,” Opt. Eng. 26, 423 (1987); B. Fischer, S. Weiss, S. Sternklar, “Spatial Light Modulation and Filtering Effects in Photorefractive Wave-Mixing,” Appl. Phys. Lett. 50, 483 (1987).
[CrossRef]

B. Fischer, S. Sternklar, “Self Bragg Matched Beam Steering Using the Double Color Pumped Photorefractive Oscillator,” Appl. Phys. Lett. 51, 74 (1987); S. Sternklar, B. Fischer, “Double-Color-Pumped Photorefractive Four Wave Mixing Oscillator and Image Color Conversion,” Opt. Lett. 12, 711 (1987).
[CrossRef] [PubMed]

S. Sternklar, S. Weiss, M. Segev, B. Fischer, “Mach-Zehnder Interferometer with Multimode Fibers Using the Double Phase Conjugate Mirror,” Appl. Opt. 25, 4518 (1986).
[CrossRef] [PubMed]

S. Weiss, S. Sternklar, B. Fischer, “Double Phase Conjugate Mirror: Analysis, Demonstration and Applications,” Opt. Lett. 12, 114 (1985); S. Sternklar, S. Weiss, M. Segev, B. Fischer, “Beam Coupling and Locking of Lasers Using Photorefractive Four-Wave Mixing,” Opt. Lett. 11, 528 (1986).
[CrossRef] [PubMed]

M. Cronin Golomb, B. Fischer, J. O. White, A. Yariv, “Theory and Applications of Four Wave Mixing in Photorefractive Media,” IEEE J. Quantum Electron. QE-20, 12 (1984); J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, “Coherent Oscillation by Self-Induced Gratings in the Photorefractive Crystal BaTiO3,” Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

Goodman, J. W.

J. W. Goodman, F. I. Leonberger, S. Y. King, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

J. W. Goodman, A. R. Dias, L. M. Woody, “Fully Parallel, High-Speed Incoherent Optical Method for Performing Discrete Fourier Transforms,” Opt. Lett. 2, 1 (1978).
[CrossRef] [PubMed]

Gookin, D. M.

Guest, C. C.

He, Q.

Hendricks, H. D.

See, for example, H. D. Hendricks, “Wavelength Division Multiplexing,” Proc. Soc. Photo-Opt. Instrum. Eng. 512, 130 (1984).

King, S. Y.

J. W. Goodman, F. I. Leonberger, S. Y. King, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Konforti, N.

E. Marom, N. Konforti, “Programmable Optical Interconnects,” Proc. Soc. Photo-Opt. Instrum. Eng. 700, 209 (1986).

Kong, H.

M. Cronin-Golomb, A. M. Biernacki, H. Kong, C. Lin, “Programmable Optical Interconnection Using a Double Phase Conjugate Mirror,” J. Opt. Soc. Am. A 4(13), p12 (1987).

Lee, S. H.

Leonberger, F. I.

J. W. Goodman, F. I. Leonberger, S. Y. King, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Lin, C.

M. Cronin-Golomb, A. M. Biernacki, H. Kong, C. Lin, “Programmable Optical Interconnection Using a Double Phase Conjugate Mirror,” J. Opt. Soc. Am. A 4(13), p12 (1987).

Marom, E.

E. Marom, N. Konforti, “Programmable Optical Interconnects,” Proc. Soc. Photo-Opt. Instrum. Eng. 700, 209 (1986).

Marrakchi, A.

Neff, J. A.

J. A. Neff, “Major Initiatives for Optical Computing,” Opt. Eng. 26, 003 (1987).
[CrossRef]

Pauliat, G.

G. Pauliat, G. Roosen, “Large Scale Interconnections Using Dynamic Gratings,” Proc. Soc. Photo-Opt. Instrum. Eng. 700, 202 (1986).

Psaltis, D.

Roosen, G.

G. Pauliat, G. Roosen, “Large Scale Interconnections Using Dynamic Gratings,” Proc. Soc. Photo-Opt. Instrum. Eng. 700, 202 (1986).

Sawchuk, A. A.

A. A. Sawchuk, T. C. Strand, “Digital Optical Computing,” Proc. IEEE 72, 758 (1984); “Optical Crossbar Network,” Computer50 (1987).
[CrossRef]

Segev, M.

Shamir, J.

Shi, Y.

Sternklar, S.

B. Fischer, S. Sternklar, “Self Bragg Matched Beam Steering Using the Double Color Pumped Photorefractive Oscillator,” Appl. Phys. Lett. 51, 74 (1987); S. Sternklar, B. Fischer, “Double-Color-Pumped Photorefractive Four Wave Mixing Oscillator and Image Color Conversion,” Opt. Lett. 12, 711 (1987).
[CrossRef] [PubMed]

S. Sternklar, S. Weiss, B. Fischer, “Optical Information Processing with the Double Phase Conjugate Mirror,” Opt. Eng. 26, 423 (1987); B. Fischer, S. Weiss, S. Sternklar, “Spatial Light Modulation and Filtering Effects in Photorefractive Wave-Mixing,” Appl. Phys. Lett. 50, 483 (1987).
[CrossRef]

S. Sternklar, S. Weiss, M. Segev, B. Fischer, “Mach-Zehnder Interferometer with Multimode Fibers Using the Double Phase Conjugate Mirror,” Appl. Opt. 25, 4518 (1986).
[CrossRef] [PubMed]

S. Weiss, S. Sternklar, B. Fischer, “Double Phase Conjugate Mirror: Analysis, Demonstration and Applications,” Opt. Lett. 12, 114 (1985); S. Sternklar, S. Weiss, M. Segev, B. Fischer, “Beam Coupling and Locking of Lasers Using Photorefractive Four-Wave Mixing,” Opt. Lett. 11, 528 (1986).
[CrossRef] [PubMed]

Strand, T. C.

A. A. Sawchuk, T. C. Strand, “Digital Optical Computing,” Proc. IEEE 72, 758 (1984); “Optical Crossbar Network,” Computer50 (1987).
[CrossRef]

Tanguay, A. R.

Weiss, S.

White, J. O.

M. Cronin Golomb, B. Fischer, J. O. White, A. Yariv, “Theory and Applications of Four Wave Mixing in Photorefractive Media,” IEEE J. Quantum Electron. QE-20, 12 (1984); J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, “Coherent Oscillation by Self-Induced Gratings in the Photorefractive Crystal BaTiO3,” Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

Woody, L. M.

Yariv, A.

M. Cronin Golomb, B. Fischer, J. O. White, A. Yariv, “Theory and Applications of Four Wave Mixing in Photorefractive Media,” IEEE J. Quantum Electron. QE-20, 12 (1984); J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, “Coherent Oscillation by Self-Induced Gratings in the Photorefractive Crystal BaTiO3,” Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

B. Fischer, S. Sternklar, “Self Bragg Matched Beam Steering Using the Double Color Pumped Photorefractive Oscillator,” Appl. Phys. Lett. 51, 74 (1987); S. Sternklar, B. Fischer, “Double-Color-Pumped Photorefractive Four Wave Mixing Oscillator and Image Color Conversion,” Opt. Lett. 12, 711 (1987).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

M. Cronin Golomb, B. Fischer, J. O. White, A. Yariv, “Theory and Applications of Four Wave Mixing in Photorefractive Media,” IEEE J. Quantum Electron. QE-20, 12 (1984); J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, “Coherent Oscillation by Self-Induced Gratings in the Photorefractive Crystal BaTiO3,” Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

J. Opt. Soc. Am. A

M. Cronin-Golomb, A. M. Biernacki, H. Kong, C. Lin, “Programmable Optical Interconnection Using a Double Phase Conjugate Mirror,” J. Opt. Soc. Am. A 4(13), p12 (1987).

Opt. Eng.

S. Sternklar, S. Weiss, B. Fischer, “Optical Information Processing with the Double Phase Conjugate Mirror,” Opt. Eng. 26, 423 (1987); B. Fischer, S. Weiss, S. Sternklar, “Spatial Light Modulation and Filtering Effects in Photorefractive Wave-Mixing,” Appl. Phys. Lett. 50, 483 (1987).
[CrossRef]

L. A. Bergman et al., “Holographic Optical Interconnects for VLSI,” Opt. Eng. 25, 1109 (1986).
[CrossRef]

J. A. Neff, “Major Initiatives for Optical Computing,” Opt. Eng. 26, 003 (1987).
[CrossRef]

Opt. Lett.

Proc. IEEE

A. A. Sawchuk, T. C. Strand, “Digital Optical Computing,” Proc. IEEE 72, 758 (1984); “Optical Crossbar Network,” Computer50 (1987).
[CrossRef]

J. W. Goodman, F. I. Leonberger, S. Y. King, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

E. Marom, N. Konforti, “Programmable Optical Interconnects,” Proc. Soc. Photo-Opt. Instrum. Eng. 700, 209 (1986).

G. Pauliat, G. Roosen, “Large Scale Interconnections Using Dynamic Gratings,” Proc. Soc. Photo-Opt. Instrum. Eng. 700, 202 (1986).

See, for example, H. D. Hendricks, “Wavelength Division Multiplexing,” Proc. Soc. Photo-Opt. Instrum. Eng. 512, 130 (1984).

Other

May 87 special issue of the IEEE Commun. Mag.

Oct. 86 special issue of Opt. Eng.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

General interconnecting device links the input vector I to the output vector O. An interconnected node is shown by a full dot, as for I2O2 in the figure.

Fig. 2
Fig. 2

Various interconnect configurations: (a) broadcasting; (b) combining; (c) point to point; (d) crossbar switch.

Fig. 3
Fig. 3

Double phase conjugate mirror as an optical switch: (a) off position: the PR crystal C is pumped by one (or no) strong light beam A4. This beam is scattered in a wide angle (the fanning effect); (b) on position: directing a second control beam A2 to the opposite side of the crystal results in the collapse of the fanned light into two oscillating beams, A1 and A3 in antiparallel directions (phase conjugation) with respect to the two input beams.

Fig. 4
Fig. 4

(a) Bidirectional transmitting–receiving scheme: C, crystal; T, transmitter; R, receiver; BS, beam splitter. (b) Wave front matching for coherent detection by interfering the signal beam A, which was distorted by the multimode fiber MF: M, mirror; D, detector or screen.

Fig. 5
Fig. 5

Implementation of the broadcasting scheme. The control vector and broadcasting station are slightly focused or imaged into the crystal. The imaging optics is not shown.

Fig. 6
Fig. 6

Experimental configuration with the DPCM for the various interconnections in the paper. The beams guided in the fibers F i . have as follows: in the broadcasting scheme, the same wavelength of 488 nm; in the point-to-point scheme, 488 and 514.5 nm in F2 and F3, respectively, and each of these two wavelengths in turn in F1. In the WDM scheme, 488 and 514.5 nm in F2 and F3, respectively, and the strongest five argon-ion laser lines (simultaneously) in F1.

Fig. 7
Fig. 7

Optical signals in the experimental configuration of Fig. 6: (a) signals picked up by R1 (left) and R2 (right) for T3 = 0; (b) signals picked up by R1 (left) and R3 (right) for T2 = 0 (one division equals 5 ms).

Fig. 8
Fig. 8

Point-to-point interconnects. The beam from the left-hand side of the crystal C with a tunable wavelength λ i can be linked and tuned to any of the wavelengths λ12, … λ n of beams from the right-hand side.

Fig. 9
Fig. 9

Space division multiplexing: the two vectors which are interconnected are orthogonally imaged into the crystal creating n × n (4 × 4 in the figure) nodes, each for a single interconnect.

Fig. 10
Fig. 10

Wavelength division multiplexing.

Fig. 11
Fig. 11

(a) Wavelength division multiplexing with two DPCMs; (b) wavelength division multiplexing with one DPCM.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T = I 1 ( l ) I 4 ( o ) = I 3 ( o ) I 2 ( l ) = a 2 ( q - 1 / 2 + q 1 / 2 ) 2 - ( q - 1 / 2 - q 1 / 2 ) 2 4 ,
tanh ( - γ l a 2 ) = a ,
q I 4 ( o ) I 2 ( l ) .
1 - a 1 + a < q < 1 + a 1 - a .
IL = 10 log ( I 4 ( o ) I 1 ( l ) ) = - 10 log T .
d θ = α d λ / λ ,

Metrics