Abstract

Diffraction efficiencies and characteristic erasure times were measured for two recording materials suitable for real-time holography and four-wave mixing. A study of real-time transmission volume grating formation was done in conjunction with polarization states of the writing beams for 30-μm thick layers. Modulation transfer function curves presented were obtained using a versatile device for which the spatial frequency domain was 500–4000 cycles/mm.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Sh. D. Kakichashvili, “Polarization Recording of Holograms,” Opt. Spektrosk. 33, 324 (1972) [Opt. Spectrosc. 33, 171 (1972)].
  2. L. Nikolova, T. Todovov, “Volume Amplitude Holograms in Photodichroic Materials,” Opt. Acta 24, 1179 (1977).
    [CrossRef]
  3. T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photochromism and Dynamic Holographic Recording in a Rigid Solution of Fluorescein,” Opt. Quantum Electron. 13, 203 (1981).
    [CrossRef]
  4. T. Todorov, N. Tomova, L. Nikolova, “High Sensitivity Material with Reversible Photo-Induced Anisotropy,” Opt. Commun. 47, 123 (1983).
    [CrossRef]
  5. T. Todorov, L. Nikolova, N. Tomova, “Polarization Holography. 1: A New High-Efficiency Organic Material with Reversible Photoinduced Birefringence,” Appl. Opt. 23, 4309 (1984).
    [CrossRef] [PubMed]
  6. T. Todorov, L. Nikolova, N. Tomova, “Polarization Holography. 2: Polarization Holographic Gratings in Photoanisotropic Materials With and Without Intrinsic Birefringence,” Appl. Opt. 23, 4588 (1984).
    [CrossRef] [PubMed]
  7. T. Todorov, L. Nikolova, K. Stoyanova, N. Tomova, “Polarization Holography. 3: Some Applications of Polarization Holographic Recording,” Appl. Opt. 24, 785 (1985).
    [CrossRef] [PubMed]
  8. T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photoinduced Anisotropy in Rigid Dye Solutions for Transient Polarization Holography,” IEEE J. Quantum Electron. QE-22, 1262 (1986).
    [CrossRef]
  9. M. Gehrtz, J. Pinsl, C. Brachle, “Sensitive Detection of Phase and Absorption Gratings: Phase-Modulated, Homodyne Detected Holography,” Appl. Phys B 43, 61 (1987).
    [CrossRef]
  10. C. R. Noller, Chemistry of Organic Compounds (Saunders, Philadelphia, PA, 1957), p. 699.
  11. A. Streitweiser, C. H. Heathcock, Introduction to Organic Chemistry (Macmillan, New York, 1985), pp. 751 and 752.
  12. J. March, Advanced Organic Chemistry (Wiley-Interscience, New York, 1985), pp. 110 and 215.
  13. Ref. 10, p. 663.
  14. H. M. Smith, Holographic Recording Materials (Springer-Verlag, New York, 1977), pp. 6 and 8.
  15. J. J. A. Couture, R. A. Lessard, “Effective Thickness Determination for Volume Transmission Multiplex Holograms,” Can. J. Phys. 64, 553 (1986).
    [CrossRef]
  16. R. Magnusson, T. K. Gaylord, “Diffraction Regimes of Transmission Gratings,” J. Opt. Soc. Am. 68, 809 (1978).
    [CrossRef]
  17. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
  18. Y. Maksymik, “Automatisation de la mesure de la F.T.M. de milieux enregistreurs,” Thèse M.Sc., U. Laval, Ste-Foy, Québec (1987).
  19. D. C. Neckers, Mechanistic Organic Photochemistry (Reinhold, New York, 1967), pp. 203–207.

1987

M. Gehrtz, J. Pinsl, C. Brachle, “Sensitive Detection of Phase and Absorption Gratings: Phase-Modulated, Homodyne Detected Holography,” Appl. Phys B 43, 61 (1987).
[CrossRef]

1986

J. J. A. Couture, R. A. Lessard, “Effective Thickness Determination for Volume Transmission Multiplex Holograms,” Can. J. Phys. 64, 553 (1986).
[CrossRef]

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photoinduced Anisotropy in Rigid Dye Solutions for Transient Polarization Holography,” IEEE J. Quantum Electron. QE-22, 1262 (1986).
[CrossRef]

1985

1984

1983

T. Todorov, N. Tomova, L. Nikolova, “High Sensitivity Material with Reversible Photo-Induced Anisotropy,” Opt. Commun. 47, 123 (1983).
[CrossRef]

1981

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photochromism and Dynamic Holographic Recording in a Rigid Solution of Fluorescein,” Opt. Quantum Electron. 13, 203 (1981).
[CrossRef]

1978

1977

L. Nikolova, T. Todovov, “Volume Amplitude Holograms in Photodichroic Materials,” Opt. Acta 24, 1179 (1977).
[CrossRef]

1972

Sh. D. Kakichashvili, “Polarization Recording of Holograms,” Opt. Spektrosk. 33, 324 (1972) [Opt. Spectrosc. 33, 171 (1972)].

1969

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Brachle, C.

M. Gehrtz, J. Pinsl, C. Brachle, “Sensitive Detection of Phase and Absorption Gratings: Phase-Modulated, Homodyne Detected Holography,” Appl. Phys B 43, 61 (1987).
[CrossRef]

Couture, J. J. A.

J. J. A. Couture, R. A. Lessard, “Effective Thickness Determination for Volume Transmission Multiplex Holograms,” Can. J. Phys. 64, 553 (1986).
[CrossRef]

Dragostinova, V.

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photoinduced Anisotropy in Rigid Dye Solutions for Transient Polarization Holography,” IEEE J. Quantum Electron. QE-22, 1262 (1986).
[CrossRef]

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photochromism and Dynamic Holographic Recording in a Rigid Solution of Fluorescein,” Opt. Quantum Electron. 13, 203 (1981).
[CrossRef]

Gaylord, T. K.

Gehrtz, M.

M. Gehrtz, J. Pinsl, C. Brachle, “Sensitive Detection of Phase and Absorption Gratings: Phase-Modulated, Homodyne Detected Holography,” Appl. Phys B 43, 61 (1987).
[CrossRef]

Heathcock, C. H.

A. Streitweiser, C. H. Heathcock, Introduction to Organic Chemistry (Macmillan, New York, 1985), pp. 751 and 752.

Kakichashvili, Sh. D.

Sh. D. Kakichashvili, “Polarization Recording of Holograms,” Opt. Spektrosk. 33, 324 (1972) [Opt. Spectrosc. 33, 171 (1972)].

Kogelnik, H.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Lessard, R. A.

J. J. A. Couture, R. A. Lessard, “Effective Thickness Determination for Volume Transmission Multiplex Holograms,” Can. J. Phys. 64, 553 (1986).
[CrossRef]

Magnusson, R.

Maksymik, Y.

Y. Maksymik, “Automatisation de la mesure de la F.T.M. de milieux enregistreurs,” Thèse M.Sc., U. Laval, Ste-Foy, Québec (1987).

March, J.

J. March, Advanced Organic Chemistry (Wiley-Interscience, New York, 1985), pp. 110 and 215.

Neckers, D. C.

D. C. Neckers, Mechanistic Organic Photochemistry (Reinhold, New York, 1967), pp. 203–207.

Nikolova, L.

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photoinduced Anisotropy in Rigid Dye Solutions for Transient Polarization Holography,” IEEE J. Quantum Electron. QE-22, 1262 (1986).
[CrossRef]

T. Todorov, L. Nikolova, K. Stoyanova, N. Tomova, “Polarization Holography. 3: Some Applications of Polarization Holographic Recording,” Appl. Opt. 24, 785 (1985).
[CrossRef] [PubMed]

T. Todorov, L. Nikolova, N. Tomova, “Polarization Holography. 1: A New High-Efficiency Organic Material with Reversible Photoinduced Birefringence,” Appl. Opt. 23, 4309 (1984).
[CrossRef] [PubMed]

T. Todorov, L. Nikolova, N. Tomova, “Polarization Holography. 2: Polarization Holographic Gratings in Photoanisotropic Materials With and Without Intrinsic Birefringence,” Appl. Opt. 23, 4588 (1984).
[CrossRef] [PubMed]

T. Todorov, N. Tomova, L. Nikolova, “High Sensitivity Material with Reversible Photo-Induced Anisotropy,” Opt. Commun. 47, 123 (1983).
[CrossRef]

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photochromism and Dynamic Holographic Recording in a Rigid Solution of Fluorescein,” Opt. Quantum Electron. 13, 203 (1981).
[CrossRef]

L. Nikolova, T. Todovov, “Volume Amplitude Holograms in Photodichroic Materials,” Opt. Acta 24, 1179 (1977).
[CrossRef]

Noller, C. R.

C. R. Noller, Chemistry of Organic Compounds (Saunders, Philadelphia, PA, 1957), p. 699.

Pinsl, J.

M. Gehrtz, J. Pinsl, C. Brachle, “Sensitive Detection of Phase and Absorption Gratings: Phase-Modulated, Homodyne Detected Holography,” Appl. Phys B 43, 61 (1987).
[CrossRef]

Smith, H. M.

H. M. Smith, Holographic Recording Materials (Springer-Verlag, New York, 1977), pp. 6 and 8.

Stoyanova, K.

Streitweiser, A.

A. Streitweiser, C. H. Heathcock, Introduction to Organic Chemistry (Macmillan, New York, 1985), pp. 751 and 752.

Todorov, T.

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photoinduced Anisotropy in Rigid Dye Solutions for Transient Polarization Holography,” IEEE J. Quantum Electron. QE-22, 1262 (1986).
[CrossRef]

T. Todorov, L. Nikolova, K. Stoyanova, N. Tomova, “Polarization Holography. 3: Some Applications of Polarization Holographic Recording,” Appl. Opt. 24, 785 (1985).
[CrossRef] [PubMed]

T. Todorov, L. Nikolova, N. Tomova, “Polarization Holography. 1: A New High-Efficiency Organic Material with Reversible Photoinduced Birefringence,” Appl. Opt. 23, 4309 (1984).
[CrossRef] [PubMed]

T. Todorov, L. Nikolova, N. Tomova, “Polarization Holography. 2: Polarization Holographic Gratings in Photoanisotropic Materials With and Without Intrinsic Birefringence,” Appl. Opt. 23, 4588 (1984).
[CrossRef] [PubMed]

T. Todorov, N. Tomova, L. Nikolova, “High Sensitivity Material with Reversible Photo-Induced Anisotropy,” Opt. Commun. 47, 123 (1983).
[CrossRef]

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photochromism and Dynamic Holographic Recording in a Rigid Solution of Fluorescein,” Opt. Quantum Electron. 13, 203 (1981).
[CrossRef]

Todovov, T.

L. Nikolova, T. Todovov, “Volume Amplitude Holograms in Photodichroic Materials,” Opt. Acta 24, 1179 (1977).
[CrossRef]

Tomova, N.

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photoinduced Anisotropy in Rigid Dye Solutions for Transient Polarization Holography,” IEEE J. Quantum Electron. QE-22, 1262 (1986).
[CrossRef]

T. Todorov, L. Nikolova, K. Stoyanova, N. Tomova, “Polarization Holography. 3: Some Applications of Polarization Holographic Recording,” Appl. Opt. 24, 785 (1985).
[CrossRef] [PubMed]

T. Todorov, L. Nikolova, N. Tomova, “Polarization Holography. 1: A New High-Efficiency Organic Material with Reversible Photoinduced Birefringence,” Appl. Opt. 23, 4309 (1984).
[CrossRef] [PubMed]

T. Todorov, L. Nikolova, N. Tomova, “Polarization Holography. 2: Polarization Holographic Gratings in Photoanisotropic Materials With and Without Intrinsic Birefringence,” Appl. Opt. 23, 4588 (1984).
[CrossRef] [PubMed]

T. Todorov, N. Tomova, L. Nikolova, “High Sensitivity Material with Reversible Photo-Induced Anisotropy,” Opt. Commun. 47, 123 (1983).
[CrossRef]

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photochromism and Dynamic Holographic Recording in a Rigid Solution of Fluorescein,” Opt. Quantum Electron. 13, 203 (1981).
[CrossRef]

Appl. Opt.

Appl. Phys B

M. Gehrtz, J. Pinsl, C. Brachle, “Sensitive Detection of Phase and Absorption Gratings: Phase-Modulated, Homodyne Detected Holography,” Appl. Phys B 43, 61 (1987).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Can. J. Phys.

J. J. A. Couture, R. A. Lessard, “Effective Thickness Determination for Volume Transmission Multiplex Holograms,” Can. J. Phys. 64, 553 (1986).
[CrossRef]

IEEE J. Quantum Electron.

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photoinduced Anisotropy in Rigid Dye Solutions for Transient Polarization Holography,” IEEE J. Quantum Electron. QE-22, 1262 (1986).
[CrossRef]

J. Opt. Soc. Am.

Opt. Acta

L. Nikolova, T. Todovov, “Volume Amplitude Holograms in Photodichroic Materials,” Opt. Acta 24, 1179 (1977).
[CrossRef]

Opt. Commun.

T. Todorov, N. Tomova, L. Nikolova, “High Sensitivity Material with Reversible Photo-Induced Anisotropy,” Opt. Commun. 47, 123 (1983).
[CrossRef]

Opt. Quantum Electron.

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photochromism and Dynamic Holographic Recording in a Rigid Solution of Fluorescein,” Opt. Quantum Electron. 13, 203 (1981).
[CrossRef]

Opt. Spektrosk.

Sh. D. Kakichashvili, “Polarization Recording of Holograms,” Opt. Spektrosk. 33, 324 (1972) [Opt. Spectrosc. 33, 171 (1972)].

Other

C. R. Noller, Chemistry of Organic Compounds (Saunders, Philadelphia, PA, 1957), p. 699.

A. Streitweiser, C. H. Heathcock, Introduction to Organic Chemistry (Macmillan, New York, 1985), pp. 751 and 752.

J. March, Advanced Organic Chemistry (Wiley-Interscience, New York, 1985), pp. 110 and 215.

Ref. 10, p. 663.

H. M. Smith, Holographic Recording Materials (Springer-Verlag, New York, 1977), pp. 6 and 8.

Y. Maksymik, “Automatisation de la mesure de la F.T.M. de milieux enregistreurs,” Thèse M.Sc., U. Laval, Ste-Foy, Québec (1987).

D. C. Neckers, Mechanistic Organic Photochemistry (Reinhold, New York, 1967), pp. 203–207.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Condensed structural formula of two azo dyes studied.

Fig. 2
Fig. 2

Indicator action mechanism for methyl red.

Fig. 3
Fig. 3

Absorption spectra of methyl red dissolved in aqueous PVA solution: curve (a), pH = 6.0 yellow solution and acetic acid 20% v/v; curve (b), pH = 2.4 deep red solution.

Fig. 4
Fig. 4

Transmission spectra of methyl red: curve (a), pH = 6.0 yellow; curve (b), pH = 2,4 deep red.

Fig. 5
Fig. 5

Trans-cis reversible photoisomerization mechanism.

Fig. 6
Fig. 6

Hologram recording process.

Fig. 7
Fig. 7

Reading process.

Fig. 8
Fig. 8

Linear recording for azo/PVA samples.

Fig. 9
Fig. 9

Obliquity factor.

Fig. 10
Fig. 10

Spatial frequency analyzer setup.

Fig. 11
Fig. 11

Erasure cycles of M.O./PVA samples used in circular orthogonal polarizations.

Fig. 12
Fig. 12

Single erasure kinetics in conjunction with polarization states of the two recording beams.

Fig. 13
Fig. 13

Modulation transfer function curves of M.O./PVA samples.

Fig. 14
Fig. 14

Modulation transfer function curves of A.M.R./PVA and M.O./PVA samples.

Tables (1)

Tables Icon

Table I Initial Diffraction Efficiency Values and Erasure Times of Azo/PVA Samples

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

f = 1 Λ = 2 sin θ λ .
P 0 ( f ) = 2 I R I 0 I R + I 0 .
15 , 3 < Q < 978 , 2 15 , 4 < Q / cos θ < 4347
MTF = p 1 ( f ) p 0 ( f ) .
η = exp ( - 2 a 0 D cos θ ) [ sinh 2 ( a 1 D 2 cos θ ) + sin 2 ( π n 1 D λ cos θ ) ]
a = a 0 + a 1 cos ( 2 π χ Λ ) , n = n 0 + n 1 cos ( 2 π χ Λ ) .
p 1 ( f ) = ( a 1 D 2 cos θ ) , n 1 0.
η exp ( - 2 a 0 D cos θ ) [ ( a 1 D 2 cos θ ) 2 ] .
MTF = ( a 1 D 2 cos θ ) θ 7 0 ( a 1 D 2 cos θ ) θ = 7 0 η ( θ ) η ( 7 0 ) = η rel .
a 1 = c I θ ,
I θ = I T cos θ .
( a 1 D 2 cos θ )
p 1 ( f ) = a 1 D 2 cos θ = c I T D / 2
( 2 a 0 D cos θ ) .
14 0 2 θ 154 0 .
12 , 5 < Q / cos θ < 3520.

Metrics