Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. C. Zumsteg, J. D. Bierlein, T. E. Gier, “KxRb1−xTiOPO4: A New Nonlinear Optical Material,” J. Appl. Phys. 47, 4980 (1976).
    [CrossRef]
  2. A. A. Ballman, H. Brown, D. H. Olson, C. E. Rice, “Growth of Potassium Titanyl Phosphate (KTP) from Molten Tungstate Melts,” J. Cryst. Growth 75, 390 (1986).
    [CrossRef]
  3. J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of Blue cw Coherent Radiation by Sum Frequency Mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192 (1987).
    [CrossRef]
  4. K. Kato, “Second Harmonic and Sum Frequency Generation to 4950 and 4589 Å in KTP,” IEEE J. Quantum Electron. QE-24, 3 (1988).
    [CrossRef]
  5. A. L. Aleksandrovskii, S. A. Akhmanov, V. A. D’yakov, N. I. Zheludev, V. I. Pryalkin, “Efficient Nonlinear Optical Converters Made of Potassium Titanyl Phosphate Crystals,” Sov. J. Quantum Electron. 15, 885 (1985).
    [CrossRef]
  6. T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckhardt, Y. X. Fan, R. L. Byer, R. S. Feigelson, “Second Harmonic Generation and Accurate Index of Refraction Measurements in Flux-Grown KTiOPO4,” Appl. Opt. 26, 2390 (1987).
    [CrossRef] [PubMed]
  7. A. Seilmeier, W. Kaiser, “Generation of Tunable Picosecond Light Pulses Covering the Frequency Range Between 2,700 and 32,000 cm−1,” Appl. Phys. 23, 113 (1980).
    [CrossRef]
  8. K. H. Hellwege, Ed., Landolt-Bornstein Tables, Vol 2, Group 3, Sec. 6, Nonlinear Dielectric Susceptibilities (Springer-Verlag, Berlin, 1979).
  9. H. Vanherzeele, “Optimization of a cw Mode-Locked and Frequency-Doubled Nd:YLF Laser,” Appl. Opt. (accepted for publication). 27, (1Sept.1988).
    [CrossRef] [PubMed]

1988 (1)

K. Kato, “Second Harmonic and Sum Frequency Generation to 4950 and 4589 Å in KTP,” IEEE J. Quantum Electron. QE-24, 3 (1988).
[CrossRef]

1987 (2)

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of Blue cw Coherent Radiation by Sum Frequency Mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192 (1987).
[CrossRef]

T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckhardt, Y. X. Fan, R. L. Byer, R. S. Feigelson, “Second Harmonic Generation and Accurate Index of Refraction Measurements in Flux-Grown KTiOPO4,” Appl. Opt. 26, 2390 (1987).
[CrossRef] [PubMed]

1986 (1)

A. A. Ballman, H. Brown, D. H. Olson, C. E. Rice, “Growth of Potassium Titanyl Phosphate (KTP) from Molten Tungstate Melts,” J. Cryst. Growth 75, 390 (1986).
[CrossRef]

1985 (1)

A. L. Aleksandrovskii, S. A. Akhmanov, V. A. D’yakov, N. I. Zheludev, V. I. Pryalkin, “Efficient Nonlinear Optical Converters Made of Potassium Titanyl Phosphate Crystals,” Sov. J. Quantum Electron. 15, 885 (1985).
[CrossRef]

1980 (1)

A. Seilmeier, W. Kaiser, “Generation of Tunable Picosecond Light Pulses Covering the Frequency Range Between 2,700 and 32,000 cm−1,” Appl. Phys. 23, 113 (1980).
[CrossRef]

1976 (1)

F. C. Zumsteg, J. D. Bierlein, T. E. Gier, “KxRb1−xTiOPO4: A New Nonlinear Optical Material,” J. Appl. Phys. 47, 4980 (1976).
[CrossRef]

Akhmanov, S. A.

A. L. Aleksandrovskii, S. A. Akhmanov, V. A. D’yakov, N. I. Zheludev, V. I. Pryalkin, “Efficient Nonlinear Optical Converters Made of Potassium Titanyl Phosphate Crystals,” Sov. J. Quantum Electron. 15, 885 (1985).
[CrossRef]

Aleksandrovskii, A. L.

A. L. Aleksandrovskii, S. A. Akhmanov, V. A. D’yakov, N. I. Zheludev, V. I. Pryalkin, “Efficient Nonlinear Optical Converters Made of Potassium Titanyl Phosphate Crystals,” Sov. J. Quantum Electron. 15, 885 (1985).
[CrossRef]

Ballman, A. A.

A. A. Ballman, H. Brown, D. H. Olson, C. E. Rice, “Growth of Potassium Titanyl Phosphate (KTP) from Molten Tungstate Melts,” J. Cryst. Growth 75, 390 (1986).
[CrossRef]

Baumert, J.-C.

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of Blue cw Coherent Radiation by Sum Frequency Mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192 (1987).
[CrossRef]

Bierlein, J. D.

F. C. Zumsteg, J. D. Bierlein, T. E. Gier, “KxRb1−xTiOPO4: A New Nonlinear Optical Material,” J. Appl. Phys. 47, 4980 (1976).
[CrossRef]

Bjorklund, G. C.

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of Blue cw Coherent Radiation by Sum Frequency Mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192 (1987).
[CrossRef]

Brown, H.

A. A. Ballman, H. Brown, D. H. Olson, C. E. Rice, “Growth of Potassium Titanyl Phosphate (KTP) from Molten Tungstate Melts,” J. Cryst. Growth 75, 390 (1986).
[CrossRef]

Byer, R. L.

D’yakov, V. A.

A. L. Aleksandrovskii, S. A. Akhmanov, V. A. D’yakov, N. I. Zheludev, V. I. Pryalkin, “Efficient Nonlinear Optical Converters Made of Potassium Titanyl Phosphate Crystals,” Sov. J. Quantum Electron. 15, 885 (1985).
[CrossRef]

Eckhardt, R. C.

Fan, T. Y.

Fan, Y. X.

Feigelson, R. S.

Gier, T. E.

F. C. Zumsteg, J. D. Bierlein, T. E. Gier, “KxRb1−xTiOPO4: A New Nonlinear Optical Material,” J. Appl. Phys. 47, 4980 (1976).
[CrossRef]

Hu, B. Q.

Huang, C. E.

Kaiser, W.

A. Seilmeier, W. Kaiser, “Generation of Tunable Picosecond Light Pulses Covering the Frequency Range Between 2,700 and 32,000 cm−1,” Appl. Phys. 23, 113 (1980).
[CrossRef]

Kato, K.

K. Kato, “Second Harmonic and Sum Frequency Generation to 4950 and 4589 Å in KTP,” IEEE J. Quantum Electron. QE-24, 3 (1988).
[CrossRef]

Lenth, W.

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of Blue cw Coherent Radiation by Sum Frequency Mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192 (1987).
[CrossRef]

Olson, D. H.

A. A. Ballman, H. Brown, D. H. Olson, C. E. Rice, “Growth of Potassium Titanyl Phosphate (KTP) from Molten Tungstate Melts,” J. Cryst. Growth 75, 390 (1986).
[CrossRef]

Pryalkin, V. I.

A. L. Aleksandrovskii, S. A. Akhmanov, V. A. D’yakov, N. I. Zheludev, V. I. Pryalkin, “Efficient Nonlinear Optical Converters Made of Potassium Titanyl Phosphate Crystals,” Sov. J. Quantum Electron. 15, 885 (1985).
[CrossRef]

Rice, C. E.

A. A. Ballman, H. Brown, D. H. Olson, C. E. Rice, “Growth of Potassium Titanyl Phosphate (KTP) from Molten Tungstate Melts,” J. Cryst. Growth 75, 390 (1986).
[CrossRef]

Risk, W. P.

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of Blue cw Coherent Radiation by Sum Frequency Mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192 (1987).
[CrossRef]

Schellenberg, F. M.

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of Blue cw Coherent Radiation by Sum Frequency Mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192 (1987).
[CrossRef]

Seilmeier, A.

A. Seilmeier, W. Kaiser, “Generation of Tunable Picosecond Light Pulses Covering the Frequency Range Between 2,700 and 32,000 cm−1,” Appl. Phys. 23, 113 (1980).
[CrossRef]

Vanherzeele, H.

H. Vanherzeele, “Optimization of a cw Mode-Locked and Frequency-Doubled Nd:YLF Laser,” Appl. Opt. (accepted for publication). 27, (1Sept.1988).
[CrossRef] [PubMed]

Zheludev, N. I.

A. L. Aleksandrovskii, S. A. Akhmanov, V. A. D’yakov, N. I. Zheludev, V. I. Pryalkin, “Efficient Nonlinear Optical Converters Made of Potassium Titanyl Phosphate Crystals,” Sov. J. Quantum Electron. 15, 885 (1985).
[CrossRef]

Zumsteg, F. C.

F. C. Zumsteg, J. D. Bierlein, T. E. Gier, “KxRb1−xTiOPO4: A New Nonlinear Optical Material,” J. Appl. Phys. 47, 4980 (1976).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (1)

A. Seilmeier, W. Kaiser, “Generation of Tunable Picosecond Light Pulses Covering the Frequency Range Between 2,700 and 32,000 cm−1,” Appl. Phys. 23, 113 (1980).
[CrossRef]

Appl. Phys. Lett. (1)

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of Blue cw Coherent Radiation by Sum Frequency Mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192 (1987).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Kato, “Second Harmonic and Sum Frequency Generation to 4950 and 4589 Å in KTP,” IEEE J. Quantum Electron. QE-24, 3 (1988).
[CrossRef]

J. Appl. Phys. (1)

F. C. Zumsteg, J. D. Bierlein, T. E. Gier, “KxRb1−xTiOPO4: A New Nonlinear Optical Material,” J. Appl. Phys. 47, 4980 (1976).
[CrossRef]

J. Cryst. Growth (1)

A. A. Ballman, H. Brown, D. H. Olson, C. E. Rice, “Growth of Potassium Titanyl Phosphate (KTP) from Molten Tungstate Melts,” J. Cryst. Growth 75, 390 (1986).
[CrossRef]

Sov. J. Quantum Electron. (1)

A. L. Aleksandrovskii, S. A. Akhmanov, V. A. D’yakov, N. I. Zheludev, V. I. Pryalkin, “Efficient Nonlinear Optical Converters Made of Potassium Titanyl Phosphate Crystals,” Sov. J. Quantum Electron. 15, 885 (1985).
[CrossRef]

Other (2)

K. H. Hellwege, Ed., Landolt-Bornstein Tables, Vol 2, Group 3, Sec. 6, Nonlinear Dielectric Susceptibilities (Springer-Verlag, Berlin, 1979).

H. Vanherzeele, “Optimization of a cw Mode-Locked and Frequency-Doubled Nd:YLF Laser,” Appl. Opt. (accepted for publication). 27, (1Sept.1988).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Angle tuning curve in the y-z plane for a KTP parametric generator pumped by the second harmonic of a Nd:YLF laser (526 nm). All angles refer to internal propagation in the crystal. The dots represent the experimental data.

Fig. 2
Fig. 2

Angle tuning curve in the x-z plane for a KTP parametric generator pumped by the second harmonic of a Nd:YLF laser (526 nm). All angles refer to internal propagation in the crystal. The dots represent the experimental data.

Tables (1)

Tables Icon

Table I Sellmeier Equation Coefficients

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d eff ( I ) = 0.5 ( d 15 - d 24 ) sin 2 ϕ sin 2 θ ,
d eff ( II ) = ( d 24 - d 15 ) sin 2 ϕ sin 2 θ - ( d 15 sin 2 ϕ + d 24 cos 2 ϕ ) sin ϕ ,
n 2 = A + B 1 - ( C / λ ) 2 - D λ 2

Metrics