Abstract

The damage and transmission properties of selected commercially available fused silica fibers have been measured as a function of excimer laser wavelength. Two-photon absorption and color center formation in fused silica currently limit the use of these fibers at the excimer wavelengths of 193 nm (ArF) and 248 nm (KrF).

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Srinivasan, “Ablation of Polymers and Biological Tissue by Ultraviolet Lasers,” Science 234, 559 (1986).
    [CrossRef] [PubMed]
  2. W. S. Grundfest et al., “Laser Ablation of Human Atherosclerotic Plaque without Adjacent Tissue Injury,” J. Am. Coll. Cardiol. 5, 929 (1985).
    [CrossRef] [PubMed]
  3. J. Marshall, S. Trokel, S. Rothery, H. Schubert, “An Ultrastructural Study of Corneal Incisions Induced by an Excimer Laser at 193 nm,” Ophthalmology 92, 749 (1985).
    [PubMed]
  4. D. Muller, R. Svrluga, “Excimer Lasers Offer Promise in Surgical Applications,” Laser Focus (July1985).
  5. G. Laufer, G. Wollenek, G. Stangl, W. Klepetko, R. Fasol, P. Zilla, E. Wolner, “Plaque Ablation by Excimer Laser Irradiation Using a Movable Energy—Transmitting Device,” Tex. Heart Inst. J. 14, 47 (1987).
  6. J. M. Isner et al., “The Excimer Laser: Light Microscopic and Ultrastructural Analysis of Potential Advantages for use in Laser Therapy of Cardiovascular Disease,” J. Am. Coll. Cardiol. 6, 1102 (1985).
    [CrossRef] [PubMed]
  7. E. A. Nevis, “Alteration of the Transmission Characteristics of Fused Silica Optical Fibers by Pulsed Ultraviolet Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 540, 421 (1985).
  8. M. Bass, D. W. Fradin, “Surface and Bulk Laser-Damage Statistics and the Identification of Intrinsic Breakdown Processes,” IEEE J’ Quantum Electron. QE-9, 890 (1973).
  9. A. J. Glass, A. H. Guenther, “Laser Induced Damage of Optical Elements—a Status Report,” Appl. Opt. 12, 637 (1973).
    [CrossRef] [PubMed]
  10. F. Rainer, E. A. Hildum, “Review of UV Laser Damage Measurements at Lawrence Livermore National Laboratory,” Proc. Soc. Photo-Opt. Instrum. Eng. 710, 74 (1986).
  11. W. H. Lowdermilk, D. Milam, “Review of Ultraviolet Damage Threshold Measurements at Lawrence Livermore National Laboratory,” Proc. Soc. Photo-Opt. Instrum. Eng. 476, 143 (1984).
  12. S. W. Allison, G. T. Gillies, D. W. Magnuson, T. S. Pagano, “Pulsed Laser Damage to Optical Fibers,” Appl. Opt. 24, 3140 (1985).
    [CrossRef] [PubMed]
  13. R. S. Taylor, K. E. Leopold, S. Mihailov, R. K. Brimacombe, “Damage Measurements of Fused Silica Fibres Using Long Optical Pulse XeCl Lasers,” Opt. Commun. 63, 26 (1987).
    [CrossRef]
  14. M. J. Soileau, W. E. Williams, E. W. Van Stryland, T. F. Boggess, A. L. Smirl, “Picosecond Damage Studies at 0.5 and 1 μm,” Opt. Eng. 22, 424 (1983).
    [CrossRef]
  15. D. W. Fradin, N. Bloembergen, J. P. Letellier, “Dependence of Laser-Induced Breakdown Field Strength on Pulse Duration,” Appl. Phys. Lett. 22, 635 (1973).
    [CrossRef]
  16. I. M. Buzhinskii, A. E. Pozdnyakov, “Relationship Between Damage Thresholds of Glass Caused by Laser Pulses of Different Durations,” Sov. J. Quantum Electron. 5, 835 (1975).
    [CrossRef]
  17. J. R. Bettis, R. A. House, A. H. Guenther, “Spot Size and Pulse Duration Dependence of Laser-Induced Damage,” Natl. Bur. Stand. U.S. Spec. Publ. 462, 338 (1976).
  18. B. G. Gorshkov, A. S. Epifanov, A. A. Manenkov, A. A. Panov, “Studies of Laser-Produced Damage to Transparent Optical Material in the UV Region and in Crossed UV-IR Beams,” Laser Induced Damage in Optical Materials,” Natl. Bur. Stand. U.S. Spec. Publ. 638, 76 (1981).
  19. D. L. Singleton, G. Paraskevopoulos, R. S. Taylor, L. A. J. Higginson, “Excimer Laser Angioplasty: Tissue Ablation, Arterial Response, and Fiber Optic Delivery,” IEEE J. Quantum Electron. QE-23, 1772 (1987).
    [CrossRef]
  20. D. A. Pinnow, T. C. Rich, F. W. Ostermayer, M. DiDomenico, “Fundamental Optical Attenuation Limits in the Liquid and Glassy State with Application to Fiber Optical Waveguide Materials,” Appl. Phys. Lett. 22, 527 (1973).
    [CrossRef]
  21. J. D. Dow, D. Redfield, “Toward a Unified Theory of Urbach’s Rule and Exponential Absorption Edges,” Phys. Rev. B 5, 594 (1972).
    [CrossRef]
  22. F. Urbach, “The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids,” Phys. Rev. 92, 1324 (1953).
    [CrossRef]
  23. R. G. Smith, “Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering,” Appl. Opt. 11, 2489 (1972).
    [CrossRef] [PubMed]
  24. W. L. Smith, J. H. Bechtel, N. Bloembergen, “Dielectric-Breakdown Threshold and Nonlinear-Refractive-Index Measurements with Picosecond Laser Pulses,” Phys. Rev. B 12, 706 (1975).
    [CrossRef]
  25. S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov, “Self-Focusing, Self-Defocusing and Self-Modulation of Laser Beams,” in Laser Handbook, F. T. Arecchi, E. O. Schulz-DuBois, Eds. (North-Holland, Amsterdam, 1972), Vol. 2, Chap. E3.
  26. J. Marburger, “Self-Focusing with Elliptical Beams,” Laser Induced Damage in Optical Materials, Natl. Bur. Stand. U.S. Spec. Publ. 372, 84 (1972).
  27. R. Pini, R. Salimbeni, M. Matera, C. Lin, “Wideband Frequency Conversion in the UV by Nine Orders of Stimulated Raman Scattering in a XeCl Laser Pumped Multimode Silica Fiber,” Appl. Phys. Lett. 43, 517 (1983).
    [CrossRef]
  28. Y. Itoh, K. Kunitomo, M. Obara, T. Fujioka, “High Power KrF Laser Transmission Through Optical Fibers and its Application to the Triggering of Gas Switches,” J. Appl. Phys. 54, 2956 (1983).
    [CrossRef]
  29. M. Rothschild, H. Abad, “Stimulated Raman Scattering in Fibers in the Ultraviolet,” Opt. Lett. 8, 653 (1983).
    [CrossRef] [PubMed]
  30. P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute Two-Photon Absorption Coefficients at 355 and 266 nm,” Laser Induced Damage in Optical Materials, Natl. Bur. Stand. U.S. Spec. Publ. 509, 489 (1978).
  31. J. H. Bechtel, W. L. Smith, “Two-Photon Absorption in Semiconductors with Picosecond Laser Pulses,” Phys. Rev. B 13, 3515 (1976).
    [CrossRef]
  32. This value is based on the laser manufacturer’s quoted pulse duration of 10 ns (FWHM), which could not be verified because a photodiode sensitive at 193 nm was not available.
  33. J. H. Stathis, M. A. Kastner, “Vacuum-Ultraviolet Generation of Luminescence and Absorption Centres in a -SiO2,” Philos. Mag. B 49, 357 (1984).
    [CrossRef]
  34. P. Kaiser, “Drawing-Induced Coloration in Vitreous Silica Fibers,” J. Opt. Soc. Am. 64, 475 (1974).
    [CrossRef]
  35. S. K. Balitskas, E. K. Maldutis, “Bulk Damage to Optical Glasses by Repeated Laser Irradiation,” Sov. J. Quantum Electron. 11, 541 (1981).
    [CrossRef]
  36. S. T. Wu, M. Bass, “Laser Induced Irreversible Absorption Changes in Alkali Halides at 10.6 μm,” Appl. Phys. Lett. 39, 948 (1981).
    [CrossRef]
  37. R. S. Taylor, K. E. Leopold, “Microsecond Duration Optical Pulses from a UV-Preionized XeCl Laser,” Appl. Phys. Lett. 47, 81 (1985).
    [CrossRef]
  38. L. P. Shishatskaya, P. A. Tsiryulnik, V. M. Reyterov, L. N. Safonova, “The Effect of Vacuum Ultraviolet Radiation on the Transmittance of Lithium Fluoride and Magnesium Fluoride Crystals,” Sov. J. Opt. Technol. 39, 651 (1972).

1987 (3)

G. Laufer, G. Wollenek, G. Stangl, W. Klepetko, R. Fasol, P. Zilla, E. Wolner, “Plaque Ablation by Excimer Laser Irradiation Using a Movable Energy—Transmitting Device,” Tex. Heart Inst. J. 14, 47 (1987).

R. S. Taylor, K. E. Leopold, S. Mihailov, R. K. Brimacombe, “Damage Measurements of Fused Silica Fibres Using Long Optical Pulse XeCl Lasers,” Opt. Commun. 63, 26 (1987).
[CrossRef]

D. L. Singleton, G. Paraskevopoulos, R. S. Taylor, L. A. J. Higginson, “Excimer Laser Angioplasty: Tissue Ablation, Arterial Response, and Fiber Optic Delivery,” IEEE J. Quantum Electron. QE-23, 1772 (1987).
[CrossRef]

1986 (2)

R. Srinivasan, “Ablation of Polymers and Biological Tissue by Ultraviolet Lasers,” Science 234, 559 (1986).
[CrossRef] [PubMed]

F. Rainer, E. A. Hildum, “Review of UV Laser Damage Measurements at Lawrence Livermore National Laboratory,” Proc. Soc. Photo-Opt. Instrum. Eng. 710, 74 (1986).

1985 (7)

R. S. Taylor, K. E. Leopold, “Microsecond Duration Optical Pulses from a UV-Preionized XeCl Laser,” Appl. Phys. Lett. 47, 81 (1985).
[CrossRef]

W. S. Grundfest et al., “Laser Ablation of Human Atherosclerotic Plaque without Adjacent Tissue Injury,” J. Am. Coll. Cardiol. 5, 929 (1985).
[CrossRef] [PubMed]

J. Marshall, S. Trokel, S. Rothery, H. Schubert, “An Ultrastructural Study of Corneal Incisions Induced by an Excimer Laser at 193 nm,” Ophthalmology 92, 749 (1985).
[PubMed]

D. Muller, R. Svrluga, “Excimer Lasers Offer Promise in Surgical Applications,” Laser Focus (July1985).

J. M. Isner et al., “The Excimer Laser: Light Microscopic and Ultrastructural Analysis of Potential Advantages for use in Laser Therapy of Cardiovascular Disease,” J. Am. Coll. Cardiol. 6, 1102 (1985).
[CrossRef] [PubMed]

E. A. Nevis, “Alteration of the Transmission Characteristics of Fused Silica Optical Fibers by Pulsed Ultraviolet Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 540, 421 (1985).

S. W. Allison, G. T. Gillies, D. W. Magnuson, T. S. Pagano, “Pulsed Laser Damage to Optical Fibers,” Appl. Opt. 24, 3140 (1985).
[CrossRef] [PubMed]

1984 (2)

W. H. Lowdermilk, D. Milam, “Review of Ultraviolet Damage Threshold Measurements at Lawrence Livermore National Laboratory,” Proc. Soc. Photo-Opt. Instrum. Eng. 476, 143 (1984).

J. H. Stathis, M. A. Kastner, “Vacuum-Ultraviolet Generation of Luminescence and Absorption Centres in a -SiO2,” Philos. Mag. B 49, 357 (1984).
[CrossRef]

1983 (4)

R. Pini, R. Salimbeni, M. Matera, C. Lin, “Wideband Frequency Conversion in the UV by Nine Orders of Stimulated Raman Scattering in a XeCl Laser Pumped Multimode Silica Fiber,” Appl. Phys. Lett. 43, 517 (1983).
[CrossRef]

Y. Itoh, K. Kunitomo, M. Obara, T. Fujioka, “High Power KrF Laser Transmission Through Optical Fibers and its Application to the Triggering of Gas Switches,” J. Appl. Phys. 54, 2956 (1983).
[CrossRef]

M. Rothschild, H. Abad, “Stimulated Raman Scattering in Fibers in the Ultraviolet,” Opt. Lett. 8, 653 (1983).
[CrossRef] [PubMed]

M. J. Soileau, W. E. Williams, E. W. Van Stryland, T. F. Boggess, A. L. Smirl, “Picosecond Damage Studies at 0.5 and 1 μm,” Opt. Eng. 22, 424 (1983).
[CrossRef]

1981 (3)

B. G. Gorshkov, A. S. Epifanov, A. A. Manenkov, A. A. Panov, “Studies of Laser-Produced Damage to Transparent Optical Material in the UV Region and in Crossed UV-IR Beams,” Laser Induced Damage in Optical Materials,” Natl. Bur. Stand. U.S. Spec. Publ. 638, 76 (1981).

S. K. Balitskas, E. K. Maldutis, “Bulk Damage to Optical Glasses by Repeated Laser Irradiation,” Sov. J. Quantum Electron. 11, 541 (1981).
[CrossRef]

S. T. Wu, M. Bass, “Laser Induced Irreversible Absorption Changes in Alkali Halides at 10.6 μm,” Appl. Phys. Lett. 39, 948 (1981).
[CrossRef]

1978 (1)

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute Two-Photon Absorption Coefficients at 355 and 266 nm,” Laser Induced Damage in Optical Materials, Natl. Bur. Stand. U.S. Spec. Publ. 509, 489 (1978).

1976 (2)

J. H. Bechtel, W. L. Smith, “Two-Photon Absorption in Semiconductors with Picosecond Laser Pulses,” Phys. Rev. B 13, 3515 (1976).
[CrossRef]

J. R. Bettis, R. A. House, A. H. Guenther, “Spot Size and Pulse Duration Dependence of Laser-Induced Damage,” Natl. Bur. Stand. U.S. Spec. Publ. 462, 338 (1976).

1975 (2)

I. M. Buzhinskii, A. E. Pozdnyakov, “Relationship Between Damage Thresholds of Glass Caused by Laser Pulses of Different Durations,” Sov. J. Quantum Electron. 5, 835 (1975).
[CrossRef]

W. L. Smith, J. H. Bechtel, N. Bloembergen, “Dielectric-Breakdown Threshold and Nonlinear-Refractive-Index Measurements with Picosecond Laser Pulses,” Phys. Rev. B 12, 706 (1975).
[CrossRef]

1974 (1)

1973 (4)

A. J. Glass, A. H. Guenther, “Laser Induced Damage of Optical Elements—a Status Report,” Appl. Opt. 12, 637 (1973).
[CrossRef] [PubMed]

D. W. Fradin, N. Bloembergen, J. P. Letellier, “Dependence of Laser-Induced Breakdown Field Strength on Pulse Duration,” Appl. Phys. Lett. 22, 635 (1973).
[CrossRef]

D. A. Pinnow, T. C. Rich, F. W. Ostermayer, M. DiDomenico, “Fundamental Optical Attenuation Limits in the Liquid and Glassy State with Application to Fiber Optical Waveguide Materials,” Appl. Phys. Lett. 22, 527 (1973).
[CrossRef]

M. Bass, D. W. Fradin, “Surface and Bulk Laser-Damage Statistics and the Identification of Intrinsic Breakdown Processes,” IEEE J’ Quantum Electron. QE-9, 890 (1973).

1972 (4)

J. D. Dow, D. Redfield, “Toward a Unified Theory of Urbach’s Rule and Exponential Absorption Edges,” Phys. Rev. B 5, 594 (1972).
[CrossRef]

L. P. Shishatskaya, P. A. Tsiryulnik, V. M. Reyterov, L. N. Safonova, “The Effect of Vacuum Ultraviolet Radiation on the Transmittance of Lithium Fluoride and Magnesium Fluoride Crystals,” Sov. J. Opt. Technol. 39, 651 (1972).

R. G. Smith, “Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering,” Appl. Opt. 11, 2489 (1972).
[CrossRef] [PubMed]

J. Marburger, “Self-Focusing with Elliptical Beams,” Laser Induced Damage in Optical Materials, Natl. Bur. Stand. U.S. Spec. Publ. 372, 84 (1972).

1953 (1)

F. Urbach, “The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids,” Phys. Rev. 92, 1324 (1953).
[CrossRef]

Abad, H.

Adhav, R. S.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute Two-Photon Absorption Coefficients at 355 and 266 nm,” Laser Induced Damage in Optical Materials, Natl. Bur. Stand. U.S. Spec. Publ. 509, 489 (1978).

Akhmanov, S. A.

S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov, “Self-Focusing, Self-Defocusing and Self-Modulation of Laser Beams,” in Laser Handbook, F. T. Arecchi, E. O. Schulz-DuBois, Eds. (North-Holland, Amsterdam, 1972), Vol. 2, Chap. E3.

Allison, S. W.

Balitskas, S. K.

S. K. Balitskas, E. K. Maldutis, “Bulk Damage to Optical Glasses by Repeated Laser Irradiation,” Sov. J. Quantum Electron. 11, 541 (1981).
[CrossRef]

Bass, M.

S. T. Wu, M. Bass, “Laser Induced Irreversible Absorption Changes in Alkali Halides at 10.6 μm,” Appl. Phys. Lett. 39, 948 (1981).
[CrossRef]

M. Bass, D. W. Fradin, “Surface and Bulk Laser-Damage Statistics and the Identification of Intrinsic Breakdown Processes,” IEEE J’ Quantum Electron. QE-9, 890 (1973).

Bechtel, J. H.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute Two-Photon Absorption Coefficients at 355 and 266 nm,” Laser Induced Damage in Optical Materials, Natl. Bur. Stand. U.S. Spec. Publ. 509, 489 (1978).

J. H. Bechtel, W. L. Smith, “Two-Photon Absorption in Semiconductors with Picosecond Laser Pulses,” Phys. Rev. B 13, 3515 (1976).
[CrossRef]

W. L. Smith, J. H. Bechtel, N. Bloembergen, “Dielectric-Breakdown Threshold and Nonlinear-Refractive-Index Measurements with Picosecond Laser Pulses,” Phys. Rev. B 12, 706 (1975).
[CrossRef]

Bettis, J. R.

J. R. Bettis, R. A. House, A. H. Guenther, “Spot Size and Pulse Duration Dependence of Laser-Induced Damage,” Natl. Bur. Stand. U.S. Spec. Publ. 462, 338 (1976).

Bloembergen, N.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute Two-Photon Absorption Coefficients at 355 and 266 nm,” Laser Induced Damage in Optical Materials, Natl. Bur. Stand. U.S. Spec. Publ. 509, 489 (1978).

W. L. Smith, J. H. Bechtel, N. Bloembergen, “Dielectric-Breakdown Threshold and Nonlinear-Refractive-Index Measurements with Picosecond Laser Pulses,” Phys. Rev. B 12, 706 (1975).
[CrossRef]

D. W. Fradin, N. Bloembergen, J. P. Letellier, “Dependence of Laser-Induced Breakdown Field Strength on Pulse Duration,” Appl. Phys. Lett. 22, 635 (1973).
[CrossRef]

Boggess, T. F.

M. J. Soileau, W. E. Williams, E. W. Van Stryland, T. F. Boggess, A. L. Smirl, “Picosecond Damage Studies at 0.5 and 1 μm,” Opt. Eng. 22, 424 (1983).
[CrossRef]

Brimacombe, R. K.

R. S. Taylor, K. E. Leopold, S. Mihailov, R. K. Brimacombe, “Damage Measurements of Fused Silica Fibres Using Long Optical Pulse XeCl Lasers,” Opt. Commun. 63, 26 (1987).
[CrossRef]

Buzhinskii, I. M.

I. M. Buzhinskii, A. E. Pozdnyakov, “Relationship Between Damage Thresholds of Glass Caused by Laser Pulses of Different Durations,” Sov. J. Quantum Electron. 5, 835 (1975).
[CrossRef]

DiDomenico, M.

D. A. Pinnow, T. C. Rich, F. W. Ostermayer, M. DiDomenico, “Fundamental Optical Attenuation Limits in the Liquid and Glassy State with Application to Fiber Optical Waveguide Materials,” Appl. Phys. Lett. 22, 527 (1973).
[CrossRef]

Dow, J. D.

J. D. Dow, D. Redfield, “Toward a Unified Theory of Urbach’s Rule and Exponential Absorption Edges,” Phys. Rev. B 5, 594 (1972).
[CrossRef]

Epifanov, A. S.

B. G. Gorshkov, A. S. Epifanov, A. A. Manenkov, A. A. Panov, “Studies of Laser-Produced Damage to Transparent Optical Material in the UV Region and in Crossed UV-IR Beams,” Laser Induced Damage in Optical Materials,” Natl. Bur. Stand. U.S. Spec. Publ. 638, 76 (1981).

Fasol, R.

G. Laufer, G. Wollenek, G. Stangl, W. Klepetko, R. Fasol, P. Zilla, E. Wolner, “Plaque Ablation by Excimer Laser Irradiation Using a Movable Energy—Transmitting Device,” Tex. Heart Inst. J. 14, 47 (1987).

Fradin, D. W.

M. Bass, D. W. Fradin, “Surface and Bulk Laser-Damage Statistics and the Identification of Intrinsic Breakdown Processes,” IEEE J’ Quantum Electron. QE-9, 890 (1973).

D. W. Fradin, N. Bloembergen, J. P. Letellier, “Dependence of Laser-Induced Breakdown Field Strength on Pulse Duration,” Appl. Phys. Lett. 22, 635 (1973).
[CrossRef]

Fujioka, T.

Y. Itoh, K. Kunitomo, M. Obara, T. Fujioka, “High Power KrF Laser Transmission Through Optical Fibers and its Application to the Triggering of Gas Switches,” J. Appl. Phys. 54, 2956 (1983).
[CrossRef]

Gillies, G. T.

Glass, A. J.

Gorshkov, B. G.

B. G. Gorshkov, A. S. Epifanov, A. A. Manenkov, A. A. Panov, “Studies of Laser-Produced Damage to Transparent Optical Material in the UV Region and in Crossed UV-IR Beams,” Laser Induced Damage in Optical Materials,” Natl. Bur. Stand. U.S. Spec. Publ. 638, 76 (1981).

Grundfest, W. S.

W. S. Grundfest et al., “Laser Ablation of Human Atherosclerotic Plaque without Adjacent Tissue Injury,” J. Am. Coll. Cardiol. 5, 929 (1985).
[CrossRef] [PubMed]

Guenther, A. H.

J. R. Bettis, R. A. House, A. H. Guenther, “Spot Size and Pulse Duration Dependence of Laser-Induced Damage,” Natl. Bur. Stand. U.S. Spec. Publ. 462, 338 (1976).

A. J. Glass, A. H. Guenther, “Laser Induced Damage of Optical Elements—a Status Report,” Appl. Opt. 12, 637 (1973).
[CrossRef] [PubMed]

Higginson, L. A. J.

D. L. Singleton, G. Paraskevopoulos, R. S. Taylor, L. A. J. Higginson, “Excimer Laser Angioplasty: Tissue Ablation, Arterial Response, and Fiber Optic Delivery,” IEEE J. Quantum Electron. QE-23, 1772 (1987).
[CrossRef]

Hildum, E. A.

F. Rainer, E. A. Hildum, “Review of UV Laser Damage Measurements at Lawrence Livermore National Laboratory,” Proc. Soc. Photo-Opt. Instrum. Eng. 710, 74 (1986).

House, R. A.

J. R. Bettis, R. A. House, A. H. Guenther, “Spot Size and Pulse Duration Dependence of Laser-Induced Damage,” Natl. Bur. Stand. U.S. Spec. Publ. 462, 338 (1976).

Isner, J. M.

J. M. Isner et al., “The Excimer Laser: Light Microscopic and Ultrastructural Analysis of Potential Advantages for use in Laser Therapy of Cardiovascular Disease,” J. Am. Coll. Cardiol. 6, 1102 (1985).
[CrossRef] [PubMed]

Itoh, Y.

Y. Itoh, K. Kunitomo, M. Obara, T. Fujioka, “High Power KrF Laser Transmission Through Optical Fibers and its Application to the Triggering of Gas Switches,” J. Appl. Phys. 54, 2956 (1983).
[CrossRef]

Kaiser, P.

Kastner, M. A.

J. H. Stathis, M. A. Kastner, “Vacuum-Ultraviolet Generation of Luminescence and Absorption Centres in a -SiO2,” Philos. Mag. B 49, 357 (1984).
[CrossRef]

Khokhlov, R. V.

S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov, “Self-Focusing, Self-Defocusing and Self-Modulation of Laser Beams,” in Laser Handbook, F. T. Arecchi, E. O. Schulz-DuBois, Eds. (North-Holland, Amsterdam, 1972), Vol. 2, Chap. E3.

Klepetko, W.

G. Laufer, G. Wollenek, G. Stangl, W. Klepetko, R. Fasol, P. Zilla, E. Wolner, “Plaque Ablation by Excimer Laser Irradiation Using a Movable Energy—Transmitting Device,” Tex. Heart Inst. J. 14, 47 (1987).

Kunitomo, K.

Y. Itoh, K. Kunitomo, M. Obara, T. Fujioka, “High Power KrF Laser Transmission Through Optical Fibers and its Application to the Triggering of Gas Switches,” J. Appl. Phys. 54, 2956 (1983).
[CrossRef]

Laufer, G.

G. Laufer, G. Wollenek, G. Stangl, W. Klepetko, R. Fasol, P. Zilla, E. Wolner, “Plaque Ablation by Excimer Laser Irradiation Using a Movable Energy—Transmitting Device,” Tex. Heart Inst. J. 14, 47 (1987).

Leopold, K. E.

R. S. Taylor, K. E. Leopold, S. Mihailov, R. K. Brimacombe, “Damage Measurements of Fused Silica Fibres Using Long Optical Pulse XeCl Lasers,” Opt. Commun. 63, 26 (1987).
[CrossRef]

R. S. Taylor, K. E. Leopold, “Microsecond Duration Optical Pulses from a UV-Preionized XeCl Laser,” Appl. Phys. Lett. 47, 81 (1985).
[CrossRef]

Letellier, J. P.

D. W. Fradin, N. Bloembergen, J. P. Letellier, “Dependence of Laser-Induced Breakdown Field Strength on Pulse Duration,” Appl. Phys. Lett. 22, 635 (1973).
[CrossRef]

Lin, C.

R. Pini, R. Salimbeni, M. Matera, C. Lin, “Wideband Frequency Conversion in the UV by Nine Orders of Stimulated Raman Scattering in a XeCl Laser Pumped Multimode Silica Fiber,” Appl. Phys. Lett. 43, 517 (1983).
[CrossRef]

Liu, P.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute Two-Photon Absorption Coefficients at 355 and 266 nm,” Laser Induced Damage in Optical Materials, Natl. Bur. Stand. U.S. Spec. Publ. 509, 489 (1978).

Lotem, H.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute Two-Photon Absorption Coefficients at 355 and 266 nm,” Laser Induced Damage in Optical Materials, Natl. Bur. Stand. U.S. Spec. Publ. 509, 489 (1978).

Lowdermilk, W. H.

W. H. Lowdermilk, D. Milam, “Review of Ultraviolet Damage Threshold Measurements at Lawrence Livermore National Laboratory,” Proc. Soc. Photo-Opt. Instrum. Eng. 476, 143 (1984).

Magnuson, D. W.

Maldutis, E. K.

S. K. Balitskas, E. K. Maldutis, “Bulk Damage to Optical Glasses by Repeated Laser Irradiation,” Sov. J. Quantum Electron. 11, 541 (1981).
[CrossRef]

Manenkov, A. A.

B. G. Gorshkov, A. S. Epifanov, A. A. Manenkov, A. A. Panov, “Studies of Laser-Produced Damage to Transparent Optical Material in the UV Region and in Crossed UV-IR Beams,” Laser Induced Damage in Optical Materials,” Natl. Bur. Stand. U.S. Spec. Publ. 638, 76 (1981).

Marburger, J.

J. Marburger, “Self-Focusing with Elliptical Beams,” Laser Induced Damage in Optical Materials, Natl. Bur. Stand. U.S. Spec. Publ. 372, 84 (1972).

Marshall, J.

J. Marshall, S. Trokel, S. Rothery, H. Schubert, “An Ultrastructural Study of Corneal Incisions Induced by an Excimer Laser at 193 nm,” Ophthalmology 92, 749 (1985).
[PubMed]

Matera, M.

R. Pini, R. Salimbeni, M. Matera, C. Lin, “Wideband Frequency Conversion in the UV by Nine Orders of Stimulated Raman Scattering in a XeCl Laser Pumped Multimode Silica Fiber,” Appl. Phys. Lett. 43, 517 (1983).
[CrossRef]

Mihailov, S.

R. S. Taylor, K. E. Leopold, S. Mihailov, R. K. Brimacombe, “Damage Measurements of Fused Silica Fibres Using Long Optical Pulse XeCl Lasers,” Opt. Commun. 63, 26 (1987).
[CrossRef]

Milam, D.

W. H. Lowdermilk, D. Milam, “Review of Ultraviolet Damage Threshold Measurements at Lawrence Livermore National Laboratory,” Proc. Soc. Photo-Opt. Instrum. Eng. 476, 143 (1984).

Muller, D.

D. Muller, R. Svrluga, “Excimer Lasers Offer Promise in Surgical Applications,” Laser Focus (July1985).

Nevis, E. A.

E. A. Nevis, “Alteration of the Transmission Characteristics of Fused Silica Optical Fibers by Pulsed Ultraviolet Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 540, 421 (1985).

Obara, M.

Y. Itoh, K. Kunitomo, M. Obara, T. Fujioka, “High Power KrF Laser Transmission Through Optical Fibers and its Application to the Triggering of Gas Switches,” J. Appl. Phys. 54, 2956 (1983).
[CrossRef]

Ostermayer, F. W.

D. A. Pinnow, T. C. Rich, F. W. Ostermayer, M. DiDomenico, “Fundamental Optical Attenuation Limits in the Liquid and Glassy State with Application to Fiber Optical Waveguide Materials,” Appl. Phys. Lett. 22, 527 (1973).
[CrossRef]

Pagano, T. S.

Panov, A. A.

B. G. Gorshkov, A. S. Epifanov, A. A. Manenkov, A. A. Panov, “Studies of Laser-Produced Damage to Transparent Optical Material in the UV Region and in Crossed UV-IR Beams,” Laser Induced Damage in Optical Materials,” Natl. Bur. Stand. U.S. Spec. Publ. 638, 76 (1981).

Paraskevopoulos, G.

D. L. Singleton, G. Paraskevopoulos, R. S. Taylor, L. A. J. Higginson, “Excimer Laser Angioplasty: Tissue Ablation, Arterial Response, and Fiber Optic Delivery,” IEEE J. Quantum Electron. QE-23, 1772 (1987).
[CrossRef]

Pini, R.

R. Pini, R. Salimbeni, M. Matera, C. Lin, “Wideband Frequency Conversion in the UV by Nine Orders of Stimulated Raman Scattering in a XeCl Laser Pumped Multimode Silica Fiber,” Appl. Phys. Lett. 43, 517 (1983).
[CrossRef]

Pinnow, D. A.

D. A. Pinnow, T. C. Rich, F. W. Ostermayer, M. DiDomenico, “Fundamental Optical Attenuation Limits in the Liquid and Glassy State with Application to Fiber Optical Waveguide Materials,” Appl. Phys. Lett. 22, 527 (1973).
[CrossRef]

Pozdnyakov, A. E.

I. M. Buzhinskii, A. E. Pozdnyakov, “Relationship Between Damage Thresholds of Glass Caused by Laser Pulses of Different Durations,” Sov. J. Quantum Electron. 5, 835 (1975).
[CrossRef]

Rainer, F.

F. Rainer, E. A. Hildum, “Review of UV Laser Damage Measurements at Lawrence Livermore National Laboratory,” Proc. Soc. Photo-Opt. Instrum. Eng. 710, 74 (1986).

Redfield, D.

J. D. Dow, D. Redfield, “Toward a Unified Theory of Urbach’s Rule and Exponential Absorption Edges,” Phys. Rev. B 5, 594 (1972).
[CrossRef]

Reyterov, V. M.

L. P. Shishatskaya, P. A. Tsiryulnik, V. M. Reyterov, L. N. Safonova, “The Effect of Vacuum Ultraviolet Radiation on the Transmittance of Lithium Fluoride and Magnesium Fluoride Crystals,” Sov. J. Opt. Technol. 39, 651 (1972).

Rich, T. C.

D. A. Pinnow, T. C. Rich, F. W. Ostermayer, M. DiDomenico, “Fundamental Optical Attenuation Limits in the Liquid and Glassy State with Application to Fiber Optical Waveguide Materials,” Appl. Phys. Lett. 22, 527 (1973).
[CrossRef]

Rothery, S.

J. Marshall, S. Trokel, S. Rothery, H. Schubert, “An Ultrastructural Study of Corneal Incisions Induced by an Excimer Laser at 193 nm,” Ophthalmology 92, 749 (1985).
[PubMed]

Rothschild, M.

Safonova, L. N.

L. P. Shishatskaya, P. A. Tsiryulnik, V. M. Reyterov, L. N. Safonova, “The Effect of Vacuum Ultraviolet Radiation on the Transmittance of Lithium Fluoride and Magnesium Fluoride Crystals,” Sov. J. Opt. Technol. 39, 651 (1972).

Salimbeni, R.

R. Pini, R. Salimbeni, M. Matera, C. Lin, “Wideband Frequency Conversion in the UV by Nine Orders of Stimulated Raman Scattering in a XeCl Laser Pumped Multimode Silica Fiber,” Appl. Phys. Lett. 43, 517 (1983).
[CrossRef]

Schubert, H.

J. Marshall, S. Trokel, S. Rothery, H. Schubert, “An Ultrastructural Study of Corneal Incisions Induced by an Excimer Laser at 193 nm,” Ophthalmology 92, 749 (1985).
[PubMed]

Shishatskaya, L. P.

L. P. Shishatskaya, P. A. Tsiryulnik, V. M. Reyterov, L. N. Safonova, “The Effect of Vacuum Ultraviolet Radiation on the Transmittance of Lithium Fluoride and Magnesium Fluoride Crystals,” Sov. J. Opt. Technol. 39, 651 (1972).

Singleton, D. L.

D. L. Singleton, G. Paraskevopoulos, R. S. Taylor, L. A. J. Higginson, “Excimer Laser Angioplasty: Tissue Ablation, Arterial Response, and Fiber Optic Delivery,” IEEE J. Quantum Electron. QE-23, 1772 (1987).
[CrossRef]

Smirl, A. L.

M. J. Soileau, W. E. Williams, E. W. Van Stryland, T. F. Boggess, A. L. Smirl, “Picosecond Damage Studies at 0.5 and 1 μm,” Opt. Eng. 22, 424 (1983).
[CrossRef]

Smith, R. G.

Smith, W. L.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute Two-Photon Absorption Coefficients at 355 and 266 nm,” Laser Induced Damage in Optical Materials, Natl. Bur. Stand. U.S. Spec. Publ. 509, 489 (1978).

J. H. Bechtel, W. L. Smith, “Two-Photon Absorption in Semiconductors with Picosecond Laser Pulses,” Phys. Rev. B 13, 3515 (1976).
[CrossRef]

W. L. Smith, J. H. Bechtel, N. Bloembergen, “Dielectric-Breakdown Threshold and Nonlinear-Refractive-Index Measurements with Picosecond Laser Pulses,” Phys. Rev. B 12, 706 (1975).
[CrossRef]

Soileau, M. J.

M. J. Soileau, W. E. Williams, E. W. Van Stryland, T. F. Boggess, A. L. Smirl, “Picosecond Damage Studies at 0.5 and 1 μm,” Opt. Eng. 22, 424 (1983).
[CrossRef]

Srinivasan, R.

R. Srinivasan, “Ablation of Polymers and Biological Tissue by Ultraviolet Lasers,” Science 234, 559 (1986).
[CrossRef] [PubMed]

Stangl, G.

G. Laufer, G. Wollenek, G. Stangl, W. Klepetko, R. Fasol, P. Zilla, E. Wolner, “Plaque Ablation by Excimer Laser Irradiation Using a Movable Energy—Transmitting Device,” Tex. Heart Inst. J. 14, 47 (1987).

Stathis, J. H.

J. H. Stathis, M. A. Kastner, “Vacuum-Ultraviolet Generation of Luminescence and Absorption Centres in a -SiO2,” Philos. Mag. B 49, 357 (1984).
[CrossRef]

Sukhorukov, A. P.

S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov, “Self-Focusing, Self-Defocusing and Self-Modulation of Laser Beams,” in Laser Handbook, F. T. Arecchi, E. O. Schulz-DuBois, Eds. (North-Holland, Amsterdam, 1972), Vol. 2, Chap. E3.

Svrluga, R.

D. Muller, R. Svrluga, “Excimer Lasers Offer Promise in Surgical Applications,” Laser Focus (July1985).

Taylor, R. S.

D. L. Singleton, G. Paraskevopoulos, R. S. Taylor, L. A. J. Higginson, “Excimer Laser Angioplasty: Tissue Ablation, Arterial Response, and Fiber Optic Delivery,” IEEE J. Quantum Electron. QE-23, 1772 (1987).
[CrossRef]

R. S. Taylor, K. E. Leopold, S. Mihailov, R. K. Brimacombe, “Damage Measurements of Fused Silica Fibres Using Long Optical Pulse XeCl Lasers,” Opt. Commun. 63, 26 (1987).
[CrossRef]

R. S. Taylor, K. E. Leopold, “Microsecond Duration Optical Pulses from a UV-Preionized XeCl Laser,” Appl. Phys. Lett. 47, 81 (1985).
[CrossRef]

Trokel, S.

J. Marshall, S. Trokel, S. Rothery, H. Schubert, “An Ultrastructural Study of Corneal Incisions Induced by an Excimer Laser at 193 nm,” Ophthalmology 92, 749 (1985).
[PubMed]

Tsiryulnik, P. A.

L. P. Shishatskaya, P. A. Tsiryulnik, V. M. Reyterov, L. N. Safonova, “The Effect of Vacuum Ultraviolet Radiation on the Transmittance of Lithium Fluoride and Magnesium Fluoride Crystals,” Sov. J. Opt. Technol. 39, 651 (1972).

Urbach, F.

F. Urbach, “The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids,” Phys. Rev. 92, 1324 (1953).
[CrossRef]

Van Stryland, E. W.

M. J. Soileau, W. E. Williams, E. W. Van Stryland, T. F. Boggess, A. L. Smirl, “Picosecond Damage Studies at 0.5 and 1 μm,” Opt. Eng. 22, 424 (1983).
[CrossRef]

Williams, W. E.

M. J. Soileau, W. E. Williams, E. W. Van Stryland, T. F. Boggess, A. L. Smirl, “Picosecond Damage Studies at 0.5 and 1 μm,” Opt. Eng. 22, 424 (1983).
[CrossRef]

Wollenek, G.

G. Laufer, G. Wollenek, G. Stangl, W. Klepetko, R. Fasol, P. Zilla, E. Wolner, “Plaque Ablation by Excimer Laser Irradiation Using a Movable Energy—Transmitting Device,” Tex. Heart Inst. J. 14, 47 (1987).

Wolner, E.

G. Laufer, G. Wollenek, G. Stangl, W. Klepetko, R. Fasol, P. Zilla, E. Wolner, “Plaque Ablation by Excimer Laser Irradiation Using a Movable Energy—Transmitting Device,” Tex. Heart Inst. J. 14, 47 (1987).

Wu, S. T.

S. T. Wu, M. Bass, “Laser Induced Irreversible Absorption Changes in Alkali Halides at 10.6 μm,” Appl. Phys. Lett. 39, 948 (1981).
[CrossRef]

Zilla, P.

G. Laufer, G. Wollenek, G. Stangl, W. Klepetko, R. Fasol, P. Zilla, E. Wolner, “Plaque Ablation by Excimer Laser Irradiation Using a Movable Energy—Transmitting Device,” Tex. Heart Inst. J. 14, 47 (1987).

Appl. Opt. (3)

Appl. Phys. Lett. (5)

R. Pini, R. Salimbeni, M. Matera, C. Lin, “Wideband Frequency Conversion in the UV by Nine Orders of Stimulated Raman Scattering in a XeCl Laser Pumped Multimode Silica Fiber,” Appl. Phys. Lett. 43, 517 (1983).
[CrossRef]

D. A. Pinnow, T. C. Rich, F. W. Ostermayer, M. DiDomenico, “Fundamental Optical Attenuation Limits in the Liquid and Glassy State with Application to Fiber Optical Waveguide Materials,” Appl. Phys. Lett. 22, 527 (1973).
[CrossRef]

S. T. Wu, M. Bass, “Laser Induced Irreversible Absorption Changes in Alkali Halides at 10.6 μm,” Appl. Phys. Lett. 39, 948 (1981).
[CrossRef]

R. S. Taylor, K. E. Leopold, “Microsecond Duration Optical Pulses from a UV-Preionized XeCl Laser,” Appl. Phys. Lett. 47, 81 (1985).
[CrossRef]

D. W. Fradin, N. Bloembergen, J. P. Letellier, “Dependence of Laser-Induced Breakdown Field Strength on Pulse Duration,” Appl. Phys. Lett. 22, 635 (1973).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. L. Singleton, G. Paraskevopoulos, R. S. Taylor, L. A. J. Higginson, “Excimer Laser Angioplasty: Tissue Ablation, Arterial Response, and Fiber Optic Delivery,” IEEE J. Quantum Electron. QE-23, 1772 (1987).
[CrossRef]

IEEE J’ Quantum Electron (1)

M. Bass, D. W. Fradin, “Surface and Bulk Laser-Damage Statistics and the Identification of Intrinsic Breakdown Processes,” IEEE J’ Quantum Electron. QE-9, 890 (1973).

J. Am. Coll. Cardiol. (2)

J. M. Isner et al., “The Excimer Laser: Light Microscopic and Ultrastructural Analysis of Potential Advantages for use in Laser Therapy of Cardiovascular Disease,” J. Am. Coll. Cardiol. 6, 1102 (1985).
[CrossRef] [PubMed]

W. S. Grundfest et al., “Laser Ablation of Human Atherosclerotic Plaque without Adjacent Tissue Injury,” J. Am. Coll. Cardiol. 5, 929 (1985).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

Y. Itoh, K. Kunitomo, M. Obara, T. Fujioka, “High Power KrF Laser Transmission Through Optical Fibers and its Application to the Triggering of Gas Switches,” J. Appl. Phys. 54, 2956 (1983).
[CrossRef]

J. Opt. Soc. Am. (1)

Laser Focus (1)

D. Muller, R. Svrluga, “Excimer Lasers Offer Promise in Surgical Applications,” Laser Focus (July1985).

Laser Induced Damage in Optical Materials (3)

B. G. Gorshkov, A. S. Epifanov, A. A. Manenkov, A. A. Panov, “Studies of Laser-Produced Damage to Transparent Optical Material in the UV Region and in Crossed UV-IR Beams,” Laser Induced Damage in Optical Materials,” Natl. Bur. Stand. U.S. Spec. Publ. 638, 76 (1981).

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute Two-Photon Absorption Coefficients at 355 and 266 nm,” Laser Induced Damage in Optical Materials, Natl. Bur. Stand. U.S. Spec. Publ. 509, 489 (1978).

J. Marburger, “Self-Focusing with Elliptical Beams,” Laser Induced Damage in Optical Materials, Natl. Bur. Stand. U.S. Spec. Publ. 372, 84 (1972).

Natl. Bur. Stand. U.S. Spec. Publ. (1)

J. R. Bettis, R. A. House, A. H. Guenther, “Spot Size and Pulse Duration Dependence of Laser-Induced Damage,” Natl. Bur. Stand. U.S. Spec. Publ. 462, 338 (1976).

Ophthalmology (1)

J. Marshall, S. Trokel, S. Rothery, H. Schubert, “An Ultrastructural Study of Corneal Incisions Induced by an Excimer Laser at 193 nm,” Ophthalmology 92, 749 (1985).
[PubMed]

Opt. Commun. (1)

R. S. Taylor, K. E. Leopold, S. Mihailov, R. K. Brimacombe, “Damage Measurements of Fused Silica Fibres Using Long Optical Pulse XeCl Lasers,” Opt. Commun. 63, 26 (1987).
[CrossRef]

Opt. Eng. (1)

M. J. Soileau, W. E. Williams, E. W. Van Stryland, T. F. Boggess, A. L. Smirl, “Picosecond Damage Studies at 0.5 and 1 μm,” Opt. Eng. 22, 424 (1983).
[CrossRef]

Opt. Lett. (1)

Philos. Mag. B (1)

J. H. Stathis, M. A. Kastner, “Vacuum-Ultraviolet Generation of Luminescence and Absorption Centres in a -SiO2,” Philos. Mag. B 49, 357 (1984).
[CrossRef]

Phys. Rev. (1)

F. Urbach, “The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids,” Phys. Rev. 92, 1324 (1953).
[CrossRef]

Phys. Rev. B (3)

J. D. Dow, D. Redfield, “Toward a Unified Theory of Urbach’s Rule and Exponential Absorption Edges,” Phys. Rev. B 5, 594 (1972).
[CrossRef]

W. L. Smith, J. H. Bechtel, N. Bloembergen, “Dielectric-Breakdown Threshold and Nonlinear-Refractive-Index Measurements with Picosecond Laser Pulses,” Phys. Rev. B 12, 706 (1975).
[CrossRef]

J. H. Bechtel, W. L. Smith, “Two-Photon Absorption in Semiconductors with Picosecond Laser Pulses,” Phys. Rev. B 13, 3515 (1976).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (3)

F. Rainer, E. A. Hildum, “Review of UV Laser Damage Measurements at Lawrence Livermore National Laboratory,” Proc. Soc. Photo-Opt. Instrum. Eng. 710, 74 (1986).

W. H. Lowdermilk, D. Milam, “Review of Ultraviolet Damage Threshold Measurements at Lawrence Livermore National Laboratory,” Proc. Soc. Photo-Opt. Instrum. Eng. 476, 143 (1984).

E. A. Nevis, “Alteration of the Transmission Characteristics of Fused Silica Optical Fibers by Pulsed Ultraviolet Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 540, 421 (1985).

Science (1)

R. Srinivasan, “Ablation of Polymers and Biological Tissue by Ultraviolet Lasers,” Science 234, 559 (1986).
[CrossRef] [PubMed]

Sov. J. Opt. Technol. (1)

L. P. Shishatskaya, P. A. Tsiryulnik, V. M. Reyterov, L. N. Safonova, “The Effect of Vacuum Ultraviolet Radiation on the Transmittance of Lithium Fluoride and Magnesium Fluoride Crystals,” Sov. J. Opt. Technol. 39, 651 (1972).

Sov. J. Quantum Electron. (2)

S. K. Balitskas, E. K. Maldutis, “Bulk Damage to Optical Glasses by Repeated Laser Irradiation,” Sov. J. Quantum Electron. 11, 541 (1981).
[CrossRef]

I. M. Buzhinskii, A. E. Pozdnyakov, “Relationship Between Damage Thresholds of Glass Caused by Laser Pulses of Different Durations,” Sov. J. Quantum Electron. 5, 835 (1975).
[CrossRef]

Tex. Heart Inst. J. (1)

G. Laufer, G. Wollenek, G. Stangl, W. Klepetko, R. Fasol, P. Zilla, E. Wolner, “Plaque Ablation by Excimer Laser Irradiation Using a Movable Energy—Transmitting Device,” Tex. Heart Inst. J. 14, 47 (1987).

Other (2)

This value is based on the laser manufacturer’s quoted pulse duration of 10 ns (FWHM), which could not be verified because a photodiode sensitive at 193 nm was not available.

S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov, “Self-Focusing, Self-Defocusing and Self-Modulation of Laser Beams,” in Laser Handbook, F. T. Arecchi, E. O. Schulz-DuBois, Eds. (North-Holland, Amsterdam, 1972), Vol. 2, Chap. E3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental layout for the fiber damage and transmission measurements.

Fig. 2
Fig. 2

Two-dimensional high resolution intensity scan and associated contour map of the ArF laser beam incident onto the front surface of the fiber.

Fig. 3
Fig. 3

(a) Cumulative XeCl laser-induced point damage on the front surface of a 600-μm core diam fiber; (b) XeCl laser-induced catastrophic front surface damage of a 400-μm core diam fiber.

Fig. 4
Fig. 4

(a) XeCl laser-induced molten surface on a fused silica substrate; (b) XeCl laser-induced shattering of a fused silica substrate.

Fig. 5
Fig. 5

Catastrophic front surface damage thresholds of fused silica substrates (dashed curve) and Diaguide ST-U fibers (solid curve) as a function of excimer laser wavelength. The data were normalized to a laser pulse duration of 30 ns and a beam area of 3 × 10−4 cm2.

Fig. 6
Fig. 6

Small signal attenuation coefficients of the all-silica Diaguide ST-U fibers as a function of excimer laser wavelength. The measured attenuation varies approximately as λ−5 as shown by the solid curve. The dashed curve represents the contribution of Rayleigh scattering to the attenuation coefficient, while the curve (– - –) is the prediction from Ref. 20 for the combined contribution of Rayleigh scattering plus the UV absorption edge.

Fig. 7
Fig. 7

Nonlinear transmission of l = 0.62-m ○ and l = 3.5-m △ 400-μm core diam Diaguide ST-U fibers at the KrF (248-nm) wavelength. The transmission includes Fresnel losses at each end of the fiber, and the input intensity is that which is incident on the fiber. The solid curves represent the theoretical predictions of the nonlinear absorption model.

Fig. 8
Fig. 8

(a) KrF optical waveform at the input of the l = 3.5-m fiber, (b) transmitted laser pulse for an input peak intensity of 47 MW/cm2. The dashed curve represents the prediction for the transmitted waveform using the nonlinear absorption model.

Fig. 9
Fig. 9

Dependence of fiber lifetime on excimer laser wavelength. The solid and dashed curves were obtained using l = 4-m, 400-μm Diaguide ST-U (1985), and Fiberguide-GUV (1985) fibers, respectively. The energies of 3, 6 and 10 mJ represent the laser energies coupled into the fibers.

Fig. 10
Fig. 10

Multiple-shot KrF laser-induced bulk attenuation in l = 0.62 m, 400-μm Fiberguide-GUV fibers after 3400 shots at the 0.2-J/cm2 fluence level and after 400 shots at 1.4 J/cm2. The low signal fiber transmissions have been normalized using the transmission data obtained on a virgin fiber.

Fig. 11
Fig. 11

Dependence of the induced bulk attenuation on the type of fiber. The l = 0.62-m fibers were run in using a KrF laser fluence of 2.7 J/cm2. The low signal fiber transmissions have been normalized using the transmission data obtained on a virgin fiber.

Tables (2)

Tables Icon

Table I Fiber Characteristics

Tables Icon

Table II Fiber Lifetime at 248 nm

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

α exp [ ( E - E g ) / Δ E ] ,
1 / T = ( 1 + β ) exp ( α 0 l ) - β ,
G R = exp ( - α 0 l ) [ 1 + β - β exp ( - α 0 l ) ] γ / α 1 ,
G R = 0.82 ( 1.07 ) 80 ~ 220.
G R = 0.53 ( 78 ) 0.08 ~ 0.7.

Metrics