Abstract

It is postulated that stray birefringence degrades the performance of the single-mode fiber Sagnac reflector. An expression for the birefringence dependence of reflector performance is derived using the Jones calculus and is used as the basis for a theoretical model of the spectral response of a real Sagnac reflector. The experimental behavior of the reflector with (1) different levels of stress applied to the fiber loop and (2) different lengths of highly birefringent fiber spliced into the loop are compared with the model. This comparison confirms the initial postulate.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Bricheno, D. P. M. Chown “All-Fiber Signal Processing Components and Applications,” in Technical Digest, Twelfth European Conference on Optical Communication, Barcelona (1986), pp. 421–424.
  2. I. D. Miller, D. B. Mortimore, B. J. Ainslie, W. P. Urquhart, S. P. Craig, C. A. Millar, D. B. Payne “New All-Fiber Laser,” in Technical Digest, Optical Fiber Communication Conference–Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper WI3.
  3. K. O. Hill, D. C. Johnson, F. Bilodeau, S. Faucher “Narrow-Bandwidth Optical Waveguide Transmission Filters,” Electron. Lett. 23, 465 (1987).
    [Crossref]
  4. W. A. Shurcliff, Polarized Light—Production and Use (Oxford U.P., New York, 1962).
  5. Ref. 4, p. 28.
  6. Ref. 4, p. 89.
  7. J. N. Ross, “The Rotation of the Polarization in Low Birefringence Monomode Optical Fibers due to Geometric Effects,” Opt. Quantum Electron. 16, 455 (1984).
    [Crossref]
  8. F. P. Payne, C. D. Hussey, M. S. Yataki, “Polarization Analysis of Strongly Fused and Weakly Fused Tapered Couplers,” Electron. Lett. 21, 561 (1985).
    [Crossref]
  9. M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, “Single-Polarization Operation of Highly Birefringent Bow-tie Optical Fibers,” Electron. Lett. 19, 246 (1983).
    [Crossref]
  10. A. J. Barlow, D. N. Payne, M. R. Hadley, R. J. Mansfield “Production of Single-Mode Fibers with Negligible Intrinsic Birefringence and Polarization Mode Dispersion,” Electron. Lett. 17, 725 (1981).
    [Crossref]

1987 (1)

K. O. Hill, D. C. Johnson, F. Bilodeau, S. Faucher “Narrow-Bandwidth Optical Waveguide Transmission Filters,” Electron. Lett. 23, 465 (1987).
[Crossref]

1985 (1)

F. P. Payne, C. D. Hussey, M. S. Yataki, “Polarization Analysis of Strongly Fused and Weakly Fused Tapered Couplers,” Electron. Lett. 21, 561 (1985).
[Crossref]

1984 (1)

J. N. Ross, “The Rotation of the Polarization in Low Birefringence Monomode Optical Fibers due to Geometric Effects,” Opt. Quantum Electron. 16, 455 (1984).
[Crossref]

1983 (1)

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, “Single-Polarization Operation of Highly Birefringent Bow-tie Optical Fibers,” Electron. Lett. 19, 246 (1983).
[Crossref]

1981 (1)

A. J. Barlow, D. N. Payne, M. R. Hadley, R. J. Mansfield “Production of Single-Mode Fibers with Negligible Intrinsic Birefringence and Polarization Mode Dispersion,” Electron. Lett. 17, 725 (1981).
[Crossref]

Ainslie, B. J.

I. D. Miller, D. B. Mortimore, B. J. Ainslie, W. P. Urquhart, S. P. Craig, C. A. Millar, D. B. Payne “New All-Fiber Laser,” in Technical Digest, Optical Fiber Communication Conference–Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper WI3.

Barlow, A. J.

A. J. Barlow, D. N. Payne, M. R. Hadley, R. J. Mansfield “Production of Single-Mode Fibers with Negligible Intrinsic Birefringence and Polarization Mode Dispersion,” Electron. Lett. 17, 725 (1981).
[Crossref]

Bilodeau, F.

K. O. Hill, D. C. Johnson, F. Bilodeau, S. Faucher “Narrow-Bandwidth Optical Waveguide Transmission Filters,” Electron. Lett. 23, 465 (1987).
[Crossref]

Birch, R. D.

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, “Single-Polarization Operation of Highly Birefringent Bow-tie Optical Fibers,” Electron. Lett. 19, 246 (1983).
[Crossref]

Bricheno, T.

T. Bricheno, D. P. M. Chown “All-Fiber Signal Processing Components and Applications,” in Technical Digest, Twelfth European Conference on Optical Communication, Barcelona (1986), pp. 421–424.

Chown, D. P. M.

T. Bricheno, D. P. M. Chown “All-Fiber Signal Processing Components and Applications,” in Technical Digest, Twelfth European Conference on Optical Communication, Barcelona (1986), pp. 421–424.

Craig, S. P.

I. D. Miller, D. B. Mortimore, B. J. Ainslie, W. P. Urquhart, S. P. Craig, C. A. Millar, D. B. Payne “New All-Fiber Laser,” in Technical Digest, Optical Fiber Communication Conference–Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper WI3.

Faucher, S.

K. O. Hill, D. C. Johnson, F. Bilodeau, S. Faucher “Narrow-Bandwidth Optical Waveguide Transmission Filters,” Electron. Lett. 23, 465 (1987).
[Crossref]

Hadley, M. R.

A. J. Barlow, D. N. Payne, M. R. Hadley, R. J. Mansfield “Production of Single-Mode Fibers with Negligible Intrinsic Birefringence and Polarization Mode Dispersion,” Electron. Lett. 17, 725 (1981).
[Crossref]

Hill, K. O.

K. O. Hill, D. C. Johnson, F. Bilodeau, S. Faucher “Narrow-Bandwidth Optical Waveguide Transmission Filters,” Electron. Lett. 23, 465 (1987).
[Crossref]

Hussey, C. D.

F. P. Payne, C. D. Hussey, M. S. Yataki, “Polarization Analysis of Strongly Fused and Weakly Fused Tapered Couplers,” Electron. Lett. 21, 561 (1985).
[Crossref]

Johnson, D. C.

K. O. Hill, D. C. Johnson, F. Bilodeau, S. Faucher “Narrow-Bandwidth Optical Waveguide Transmission Filters,” Electron. Lett. 23, 465 (1987).
[Crossref]

Mansfield, R. J.

A. J. Barlow, D. N. Payne, M. R. Hadley, R. J. Mansfield “Production of Single-Mode Fibers with Negligible Intrinsic Birefringence and Polarization Mode Dispersion,” Electron. Lett. 17, 725 (1981).
[Crossref]

Millar, C. A.

I. D. Miller, D. B. Mortimore, B. J. Ainslie, W. P. Urquhart, S. P. Craig, C. A. Millar, D. B. Payne “New All-Fiber Laser,” in Technical Digest, Optical Fiber Communication Conference–Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper WI3.

Miller, I. D.

I. D. Miller, D. B. Mortimore, B. J. Ainslie, W. P. Urquhart, S. P. Craig, C. A. Millar, D. B. Payne “New All-Fiber Laser,” in Technical Digest, Optical Fiber Communication Conference–Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper WI3.

Mortimore, D. B.

I. D. Miller, D. B. Mortimore, B. J. Ainslie, W. P. Urquhart, S. P. Craig, C. A. Millar, D. B. Payne “New All-Fiber Laser,” in Technical Digest, Optical Fiber Communication Conference–Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper WI3.

Payne, D. B.

I. D. Miller, D. B. Mortimore, B. J. Ainslie, W. P. Urquhart, S. P. Craig, C. A. Millar, D. B. Payne “New All-Fiber Laser,” in Technical Digest, Optical Fiber Communication Conference–Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper WI3.

Payne, D. N.

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, “Single-Polarization Operation of Highly Birefringent Bow-tie Optical Fibers,” Electron. Lett. 19, 246 (1983).
[Crossref]

A. J. Barlow, D. N. Payne, M. R. Hadley, R. J. Mansfield “Production of Single-Mode Fibers with Negligible Intrinsic Birefringence and Polarization Mode Dispersion,” Electron. Lett. 17, 725 (1981).
[Crossref]

Payne, F. P.

F. P. Payne, C. D. Hussey, M. S. Yataki, “Polarization Analysis of Strongly Fused and Weakly Fused Tapered Couplers,” Electron. Lett. 21, 561 (1985).
[Crossref]

Ross, J. N.

J. N. Ross, “The Rotation of the Polarization in Low Birefringence Monomode Optical Fibers due to Geometric Effects,” Opt. Quantum Electron. 16, 455 (1984).
[Crossref]

Shurcliff, W. A.

W. A. Shurcliff, Polarized Light—Production and Use (Oxford U.P., New York, 1962).

Tarbox, E. J.

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, “Single-Polarization Operation of Highly Birefringent Bow-tie Optical Fibers,” Electron. Lett. 19, 246 (1983).
[Crossref]

Urquhart, W. P.

I. D. Miller, D. B. Mortimore, B. J. Ainslie, W. P. Urquhart, S. P. Craig, C. A. Millar, D. B. Payne “New All-Fiber Laser,” in Technical Digest, Optical Fiber Communication Conference–Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper WI3.

Varnham, M. P.

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, “Single-Polarization Operation of Highly Birefringent Bow-tie Optical Fibers,” Electron. Lett. 19, 246 (1983).
[Crossref]

Yataki, M. S.

F. P. Payne, C. D. Hussey, M. S. Yataki, “Polarization Analysis of Strongly Fused and Weakly Fused Tapered Couplers,” Electron. Lett. 21, 561 (1985).
[Crossref]

Electron. Lett. (4)

K. O. Hill, D. C. Johnson, F. Bilodeau, S. Faucher “Narrow-Bandwidth Optical Waveguide Transmission Filters,” Electron. Lett. 23, 465 (1987).
[Crossref]

F. P. Payne, C. D. Hussey, M. S. Yataki, “Polarization Analysis of Strongly Fused and Weakly Fused Tapered Couplers,” Electron. Lett. 21, 561 (1985).
[Crossref]

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, “Single-Polarization Operation of Highly Birefringent Bow-tie Optical Fibers,” Electron. Lett. 19, 246 (1983).
[Crossref]

A. J. Barlow, D. N. Payne, M. R. Hadley, R. J. Mansfield “Production of Single-Mode Fibers with Negligible Intrinsic Birefringence and Polarization Mode Dispersion,” Electron. Lett. 17, 725 (1981).
[Crossref]

Opt. Quantum Electron. (1)

J. N. Ross, “The Rotation of the Polarization in Low Birefringence Monomode Optical Fibers due to Geometric Effects,” Opt. Quantum Electron. 16, 455 (1984).
[Crossref]

Other (5)

T. Bricheno, D. P. M. Chown “All-Fiber Signal Processing Components and Applications,” in Technical Digest, Twelfth European Conference on Optical Communication, Barcelona (1986), pp. 421–424.

I. D. Miller, D. B. Mortimore, B. J. Ainslie, W. P. Urquhart, S. P. Craig, C. A. Millar, D. B. Payne “New All-Fiber Laser,” in Technical Digest, Optical Fiber Communication Conference–Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper WI3.

W. A. Shurcliff, Polarized Light—Production and Use (Oxford U.P., New York, 1962).

Ref. 4, p. 28.

Ref. 4, p. 89.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Construction of the fiber Sagnac reflector showing the 3-dB coupler with the port numbering as used in the text.

Fig. 2
Fig. 2

Schematic of the reflector showing the systems of axes required to express the loop birefringence.

Fig. 3
Fig. 3

Ideal spectral transmission T of the reflector using the measured coupler characteristics and assuming no loop birefringence.

Fig. 4
Fig. 4

Spectral transmission T of the reflector for different levels of stress applied to the loop: (a) unrestrained loop lying freely on the bench; (b) loop compressed in the G-clamp; (c) loop compressed in the G-clamp under greater pressure than in (b).

Fig. 5
Fig. 5

Spectral transmission T of the reflector with a length L of HiBi fiber spliced into the loop: (a) L = 5 cm; (b) L = 10.5 cm; (c) L = 34 cm; (d) same as (c) but with the loop lying in a different configuration on the bench.

Fig. 6
Fig. 6

Theoretical transmission T of an ideal reflector using a coupler 3-dB splitting point of 820 nm and a wavelength dependence of λ5/2 in the coupling coefficient.

Fig. 7
Fig. 7

Theoretical transmission T of the reflector under the assumptions of Sec. IV with N beat lengths in the loop at 820 nm and degradation amplitude: (a) N = 2.2; D.A. = 0.3; (b) N = 4.2; D.A. = 0.05; (c) N = 11.1; D.A. = 0.3.

Fig. 8
Fig. 8

Theoretical transmission T of the reflector under the assumptions of Sec. IV with N beat lengths in the loop at 820 nm and degradation amplitude: (a) N = 9.5; D.A. = 0.3; (b) N = 20.7; D.A. = 0.1; (c) N = 66.0; D.A. = 0.4; (d) N = 66.0; D.A. = 0.1.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

E = ( E x E y ) .
E 1 = ( E 1 x E 1 y )
E 3 = cos ( C l c ) M c E 1 ,
E 4 = i sin ( C l c ) M c E l ,
M ( α ) = ( cos ( δ / 2 ) + i cos ( 2 R ) sin ( δ / 2 ) i sin ( δ / 2 ) sin ( 2 R ) exp ( i γ ) i sin ( δ / 2 ) sin ( 2 R ) exp ( i γ ) cos ( δ / 2 ) - i cos ( 2 R ) sin ( δ / 2 ) ) = ( A B - B * A * )
tan ( 2 γ ) = tan ( 2 R ) cos ( γ ) ,
· δ = 2 π N ,
M ( - α ) = ( A B * - B A * )
E 3 = M ( - α ) E 4 ,
E 4 = M ( α ) E 3 ,
E 1 = M c [ cos ( C l c ) E 3 + i sin ( C l c ) E 4 ] ,
E 2 = M c [ i sin ( C l c ) E 3 + cos ( C l c ) E 4 ] .
E 1 = i sin ( 2 C l c ) M c [ M ( α ) + M ( - α ) ] / 2 M c E 1 .
ρ = E 1 E 1 E 1 E 1 ,
ρ = sin 2 ( 2 C l c ) [ 1 - sin 2 ( π N ) sin 2 ( 2 R ) cos 2 ( γ ) ] .
τ = E 2 E 2 E 1 E 1 .
τ = 1 - ρ .
ρ = sin 2 ( 2 C l c ) .
T = - 10 log 10 ( τ )
N = N 0 λ 0 / λ ,
ρ = F ρ , τ = F τ .
T = - 10 log 10 ( τ ) = - 10 log 10 ( τ ) - 10 log 10 ( F ) .

Metrics