Abstract

A fiber-optic Mach-Zehnder interferometer with multimode fibers has been constructed, in which the fringe shift is detected by a spatial filtering detector. In this interferometer, throughput is much greater than in interferometers using single-mode fibers, but speckles disturb detection of the fringe shift. We have overcome this disadvantage by computer software; the interferometer measured temperature and a sensitivity of 72.3 ± 1.2 fringes/°C · m was obtained.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Bucaro, H. D. Dardy, E. F. Carome, “Optical Fiber Acoustic Sensor,” Appl. Opt. 16, 1761 (1977).
    [CrossRef] [PubMed]
  2. G. B. Hocker, “Fiber-Optic Sensing of Pressure and Temperature,” Appl. Opt. 18, 1445 (1979).
    [CrossRef] [PubMed]
  3. A. Dandridge, A. B. Tveten, G. H. Sigel, E. J. West, T. G. Giallorenzi, “Optical Fiber Magnetic Field Sensors,” Electron. Lett. 16, 408 (1980).
    [CrossRef]
  4. K. P. Koo, G. H. Sigel, “An Electric Field Sensor Utilizing. a Piezoelectric Polyvinylidene Fluoride (PVF2) Film in a Single-Mode Fiber Interferometer,” IEEE J. Quantum Electron. QE-18, 670 (1982).
    [CrossRef]
  5. J. P. Willson, R. E. Jones, “Magnetostrictive Fiber-Optic Sensor System for Detecting dc Magnetic Fields,” Opt. Lett. 8, 333 (1983).
    [CrossRef] [PubMed]
  6. I. Yamaguchi, T. Furukawa, T. Ueda, E. Ogita, “Accelerated Laser Speckle Strain Gauge,” Opt. Eng. 25, 671 (1986).
    [CrossRef]
  7. T. Yoshino, K. Kurosawa, K. Itoh, T. Oze, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
    [CrossRef]
  8. W. Eickhoff, “Temperature Sensing by Mode–Mode Interference in Birefringent Optical Fibers,” Opt. Lett. 6, 204 (1981).
    [CrossRef] [PubMed]

1986 (1)

I. Yamaguchi, T. Furukawa, T. Ueda, E. Ogita, “Accelerated Laser Speckle Strain Gauge,” Opt. Eng. 25, 671 (1986).
[CrossRef]

1983 (1)

1982 (2)

T. Yoshino, K. Kurosawa, K. Itoh, T. Oze, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

K. P. Koo, G. H. Sigel, “An Electric Field Sensor Utilizing. a Piezoelectric Polyvinylidene Fluoride (PVF2) Film in a Single-Mode Fiber Interferometer,” IEEE J. Quantum Electron. QE-18, 670 (1982).
[CrossRef]

1981 (1)

1980 (1)

A. Dandridge, A. B. Tveten, G. H. Sigel, E. J. West, T. G. Giallorenzi, “Optical Fiber Magnetic Field Sensors,” Electron. Lett. 16, 408 (1980).
[CrossRef]

1979 (1)

1977 (1)

Bucaro, J. A.

Carome, E. F.

Dandridge, A.

A. Dandridge, A. B. Tveten, G. H. Sigel, E. J. West, T. G. Giallorenzi, “Optical Fiber Magnetic Field Sensors,” Electron. Lett. 16, 408 (1980).
[CrossRef]

Dardy, H. D.

Eickhoff, W.

Furukawa, T.

I. Yamaguchi, T. Furukawa, T. Ueda, E. Ogita, “Accelerated Laser Speckle Strain Gauge,” Opt. Eng. 25, 671 (1986).
[CrossRef]

Giallorenzi, T. G.

A. Dandridge, A. B. Tveten, G. H. Sigel, E. J. West, T. G. Giallorenzi, “Optical Fiber Magnetic Field Sensors,” Electron. Lett. 16, 408 (1980).
[CrossRef]

Hocker, G. B.

Itoh, K.

T. Yoshino, K. Kurosawa, K. Itoh, T. Oze, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Jones, R. E.

Koo, K. P.

K. P. Koo, G. H. Sigel, “An Electric Field Sensor Utilizing. a Piezoelectric Polyvinylidene Fluoride (PVF2) Film in a Single-Mode Fiber Interferometer,” IEEE J. Quantum Electron. QE-18, 670 (1982).
[CrossRef]

Kurosawa, K.

T. Yoshino, K. Kurosawa, K. Itoh, T. Oze, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Ogita, E.

I. Yamaguchi, T. Furukawa, T. Ueda, E. Ogita, “Accelerated Laser Speckle Strain Gauge,” Opt. Eng. 25, 671 (1986).
[CrossRef]

Oze, T.

T. Yoshino, K. Kurosawa, K. Itoh, T. Oze, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Sigel, G. H.

K. P. Koo, G. H. Sigel, “An Electric Field Sensor Utilizing. a Piezoelectric Polyvinylidene Fluoride (PVF2) Film in a Single-Mode Fiber Interferometer,” IEEE J. Quantum Electron. QE-18, 670 (1982).
[CrossRef]

A. Dandridge, A. B. Tveten, G. H. Sigel, E. J. West, T. G. Giallorenzi, “Optical Fiber Magnetic Field Sensors,” Electron. Lett. 16, 408 (1980).
[CrossRef]

Tveten, A. B.

A. Dandridge, A. B. Tveten, G. H. Sigel, E. J. West, T. G. Giallorenzi, “Optical Fiber Magnetic Field Sensors,” Electron. Lett. 16, 408 (1980).
[CrossRef]

Ueda, T.

I. Yamaguchi, T. Furukawa, T. Ueda, E. Ogita, “Accelerated Laser Speckle Strain Gauge,” Opt. Eng. 25, 671 (1986).
[CrossRef]

West, E. J.

A. Dandridge, A. B. Tveten, G. H. Sigel, E. J. West, T. G. Giallorenzi, “Optical Fiber Magnetic Field Sensors,” Electron. Lett. 16, 408 (1980).
[CrossRef]

Willson, J. P.

Yamaguchi, I.

I. Yamaguchi, T. Furukawa, T. Ueda, E. Ogita, “Accelerated Laser Speckle Strain Gauge,” Opt. Eng. 25, 671 (1986).
[CrossRef]

Yoshino, T.

T. Yoshino, K. Kurosawa, K. Itoh, T. Oze, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

A. Dandridge, A. B. Tveten, G. H. Sigel, E. J. West, T. G. Giallorenzi, “Optical Fiber Magnetic Field Sensors,” Electron. Lett. 16, 408 (1980).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. P. Koo, G. H. Sigel, “An Electric Field Sensor Utilizing. a Piezoelectric Polyvinylidene Fluoride (PVF2) Film in a Single-Mode Fiber Interferometer,” IEEE J. Quantum Electron. QE-18, 670 (1982).
[CrossRef]

T. Yoshino, K. Kurosawa, K. Itoh, T. Oze, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Opt. Eng. (1)

I. Yamaguchi, T. Furukawa, T. Ueda, E. Ogita, “Accelerated Laser Speckle Strain Gauge,” Opt. Eng. 25, 671 (1986).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Multimode fiber-optic Mach-Zehnder interferometer.

Fig. 2
Fig. 2

Fringe pattern produced by the multimode fiber-optic Mach-Zehnder interferometer, which is modulated by speckles.

Fig. 3
Fig. 3

Block diagram of the spatial filtering detector system.

Fig. 4
Fig. 4

Outputs of the spatial filtering detector: (a) fringe shift before correction, and (b) output from the envelope detector, and (c) fringe shift after correction.

Fig. 5
Fig. 5

Fringe shifts as a function of temperature.

Fig. 6
Fig. 6

Fringe drift at a constant temperature.

Metrics