Abstract

A fiber-optic particle size monitor for on-line measurement is proposed. This monitor consists of a light-illumination probe and several pickup probes, which are composed of optical fibers and rod lenses. The characteristics of this monitor are discussed in terms of the configuration parameters, and some experimental results for confirming the operation are presented.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. F. Wang, D. A. Tichenor, “Particle Size Measurements Using an Optical Variable-Frequency-Grid Technique,” Appl. Opt. 20, 1367 (1981).
    [CrossRef] [PubMed]
  2. W. M. Farmer, “Measurement of Particle Size, Number Density, and Velocity Using a Laser Interferometer,” Appl. Opt. 11, 2603 (1972).
    [CrossRef] [PubMed]
  3. J. Y. Son, W. M. Farmer, T. V. Giel, “New Optical Geometry for the Particle Sizing Interferometer,” Appl. Opt. 25, 4332 (1986).
    [CrossRef] [PubMed]
  4. B. Chu, Laser Light Scattering (Academic, New York, 1974).
  5. D. P. Chowdhury, C. M. Sorensen, T. W. Taylor, J. F. Merklin, T. W. Lester, “Application of Photon Correlation Spectroscopy to Flowing Brownian Motion Systems,” Appl. Opt. 23, 4149 (1984).
    [CrossRef] [PubMed]
  6. H. R. Haller, C. Destor, D. S. Cannell, “Photometer for Quasielastic and Classical Light Scattering,” Rev. Sci. Instrum. 54, 973 (1983).
    [CrossRef]
  7. K. Suda, “Instrumentation for the Size Determination of Sub-micron Particulates Systems by Sideway Light Scattering Method,” Rev. Sci. Instrum. 51, 1049 (1980).
    [CrossRef]
  8. J. C. F. Wang, K. R. Hencken, “In Situ Particle Size Measurements Using a Two-Color Laser Scattering Technique,” Appl. Opt. 25, 653 (1986).
    [CrossRef] [PubMed]
  9. H. W. Schrader, W. G. Eisert, “High Resolution Particle Sizing Using the Combination of Time-of-Flight and Light-Scattering Measurements,” Appl. Opt. 25, 4396 (1986).
    [CrossRef] [PubMed]
  10. D. J. Holve, K. D. Annen, “Optical Particle Counting, Sizing, and Velocimetry Using Intensity Deconvolution,” Opt. Eng. 23, 591 (1984).
    [CrossRef]
  11. T. Oyama, K. Shiokawa, K. Baba, “A New Differential Light Scattering Photometer,” Polym. J. 13, 821 (1981).
    [CrossRef]
  12. D. H. Tycko, M. H. Metz, E. A. Epstein, A. Grinbaum, “Flow-Cytometric Light Scattering Measurement of Red Blood Cell Volume and Hemoglobin Concentration,” Appl. Opt. 24, 1355 (1985).
    [CrossRef] [PubMed]
  13. A. A. Hamidi, J. Swithenbank, “Vignetting in Forward Light Scattering Particle Size Distribution Measurement Techniques,” Opt. Eng. 25, 1294 (1986).
    [CrossRef]
  14. K. Tatsuno, “The Development of an Optical Fiber Droplet Sizer,” J. Soc. Instrum. Control Eng. 21, 73 (1985), in Japanese.
  15. P. J. Wyatt, “Light Scattering in the Microbial World,” J. Colloid Interface Sci. 39, 479 (1972).
    [CrossRef]
  16. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  17. E. W. Marchand, Gradient Index Optics (Academic, New York, 1978).

1986 (4)

1985 (2)

1984 (2)

1983 (1)

H. R. Haller, C. Destor, D. S. Cannell, “Photometer for Quasielastic and Classical Light Scattering,” Rev. Sci. Instrum. 54, 973 (1983).
[CrossRef]

1981 (2)

1980 (1)

K. Suda, “Instrumentation for the Size Determination of Sub-micron Particulates Systems by Sideway Light Scattering Method,” Rev. Sci. Instrum. 51, 1049 (1980).
[CrossRef]

1972 (2)

Annen, K. D.

D. J. Holve, K. D. Annen, “Optical Particle Counting, Sizing, and Velocimetry Using Intensity Deconvolution,” Opt. Eng. 23, 591 (1984).
[CrossRef]

Baba, K.

T. Oyama, K. Shiokawa, K. Baba, “A New Differential Light Scattering Photometer,” Polym. J. 13, 821 (1981).
[CrossRef]

Cannell, D. S.

H. R. Haller, C. Destor, D. S. Cannell, “Photometer for Quasielastic and Classical Light Scattering,” Rev. Sci. Instrum. 54, 973 (1983).
[CrossRef]

Chowdhury, D. P.

Chu, B.

B. Chu, Laser Light Scattering (Academic, New York, 1974).

Destor, C.

H. R. Haller, C. Destor, D. S. Cannell, “Photometer for Quasielastic and Classical Light Scattering,” Rev. Sci. Instrum. 54, 973 (1983).
[CrossRef]

Eisert, W. G.

Epstein, E. A.

Farmer, W. M.

Giel, T. V.

Grinbaum, A.

Haller, H. R.

H. R. Haller, C. Destor, D. S. Cannell, “Photometer for Quasielastic and Classical Light Scattering,” Rev. Sci. Instrum. 54, 973 (1983).
[CrossRef]

Hamidi, A. A.

A. A. Hamidi, J. Swithenbank, “Vignetting in Forward Light Scattering Particle Size Distribution Measurement Techniques,” Opt. Eng. 25, 1294 (1986).
[CrossRef]

Hencken, K. R.

Holve, D. J.

D. J. Holve, K. D. Annen, “Optical Particle Counting, Sizing, and Velocimetry Using Intensity Deconvolution,” Opt. Eng. 23, 591 (1984).
[CrossRef]

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

Lester, T. W.

Marchand, E. W.

E. W. Marchand, Gradient Index Optics (Academic, New York, 1978).

Merklin, J. F.

Metz, M. H.

Oyama, T.

T. Oyama, K. Shiokawa, K. Baba, “A New Differential Light Scattering Photometer,” Polym. J. 13, 821 (1981).
[CrossRef]

Schrader, H. W.

Shiokawa, K.

T. Oyama, K. Shiokawa, K. Baba, “A New Differential Light Scattering Photometer,” Polym. J. 13, 821 (1981).
[CrossRef]

Son, J. Y.

Sorensen, C. M.

Suda, K.

K. Suda, “Instrumentation for the Size Determination of Sub-micron Particulates Systems by Sideway Light Scattering Method,” Rev. Sci. Instrum. 51, 1049 (1980).
[CrossRef]

Swithenbank, J.

A. A. Hamidi, J. Swithenbank, “Vignetting in Forward Light Scattering Particle Size Distribution Measurement Techniques,” Opt. Eng. 25, 1294 (1986).
[CrossRef]

Tatsuno, K.

K. Tatsuno, “The Development of an Optical Fiber Droplet Sizer,” J. Soc. Instrum. Control Eng. 21, 73 (1985), in Japanese.

Taylor, T. W.

Tichenor, D. A.

Tycko, D. H.

Wang, J. C. F.

Wyatt, P. J.

P. J. Wyatt, “Light Scattering in the Microbial World,” J. Colloid Interface Sci. 39, 479 (1972).
[CrossRef]

Appl. Opt. (7)

J. Colloid Interface Sci. (1)

P. J. Wyatt, “Light Scattering in the Microbial World,” J. Colloid Interface Sci. 39, 479 (1972).
[CrossRef]

J. Soc. Instrum. Control Eng. (1)

K. Tatsuno, “The Development of an Optical Fiber Droplet Sizer,” J. Soc. Instrum. Control Eng. 21, 73 (1985), in Japanese.

Opt. Eng. (2)

A. A. Hamidi, J. Swithenbank, “Vignetting in Forward Light Scattering Particle Size Distribution Measurement Techniques,” Opt. Eng. 25, 1294 (1986).
[CrossRef]

D. J. Holve, K. D. Annen, “Optical Particle Counting, Sizing, and Velocimetry Using Intensity Deconvolution,” Opt. Eng. 23, 591 (1984).
[CrossRef]

Polym. J. (1)

T. Oyama, K. Shiokawa, K. Baba, “A New Differential Light Scattering Photometer,” Polym. J. 13, 821 (1981).
[CrossRef]

Rev. Sci. Instrum. (2)

H. R. Haller, C. Destor, D. S. Cannell, “Photometer for Quasielastic and Classical Light Scattering,” Rev. Sci. Instrum. 54, 973 (1983).
[CrossRef]

K. Suda, “Instrumentation for the Size Determination of Sub-micron Particulates Systems by Sideway Light Scattering Method,” Rev. Sci. Instrum. 51, 1049 (1980).
[CrossRef]

Other (3)

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

E. W. Marchand, Gradient Index Optics (Academic, New York, 1978).

B. Chu, Laser Light Scattering (Academic, New York, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of a fiber-optic particle size monitor.

Fig. 2
Fig. 2

Schematic diagram of a pickup probe, and the coupling light scattered by a particle.

Fig. 3
Fig. 3

Intensity ratio of scattered light with different scattering angles as a function of particle diameter. The peak value is normalized to 1.

Fig. 4
Fig. 4

Maximum intensity ratio of scattered light as a function of pickup difference angle Δθ.

Fig. 5
Fig. 5

Detectable scattering angle range as a function of the particle position. The configurations of the pickup probes are ➀ L1 = 5 mm, L2 = 0.1 mm, h = 0.15 mm and ➁ L = 5 mm, L2 = 0.7 mm, h = 0.1 mm.

Fig. 6
Fig. 6

Pickup difference angle Δθ for several types of rod lens as a function of the offset value h.

Fig. 7
Fig. 7

Pickup angle range θ s for several types of optical fiber of the pickup probe as a function of interval L2. Dotted lines indicate the bounds of the configuration where the scattered light and different scattering angles couples to each optical fiber of a pickup probe.

Fig. 8
Fig. 8

Relative detectable light intensity of a pickup probe as a function of interval L2.

Fig. 9
Fig. 9

Particle diameter range of P i = 1 for the pickup probe of Δθ = 10° and θ s = 2° as a function of the probe setting angle θ i .

Fig. 10
Fig. 10

Experimental results for the measurements of the intensity ratio of pickup probe outputs.

Fig. 11
Fig. 11

Encoded binary codes formed by the outputs of pickup probes.

Tables (1)

Tables Icon

Table I Configuration Parameters of Fiber-Optic Particle Size Monitor Composed for Experiment

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I ( α , θ ) = E N K k 2 Δ ω [ i 1 ( α , θ ) sin 2 ϕ + i 2 ( α , θ ) cos 2 ϕ ] d ω ,
R = I ( α , θ i - Δ θ / 2 ) / I ( α , θ i + Δ θ / 2 ) .
- γ 1 r 0 r 0 2 + γ 1 2 L 2 - y 0 2 + y 0 γ 1 2 L ( γ 1 2 L 2 + r 0 2 ) θ i - θ γ 1 r 0 r 0 2 + γ 1 2 L 2 - y 0 2 - y 0 γ 1 2 L ( γ 1 2 L 2 + r 0 2 ) ,
L = L 1 - z 0 .
n 1 β 1 ( θ i - θ ) + y 0 β 2 ± h _ d / 2 ,
β 1 = L + L 2 n 1 cos g D + ( 1 n 0 g - L L 2 n 0 g n 1 2 ) sin g D ,
β 2 = cos g D - L 2 n 0 g n 1 sin g D ,
n 1 β 3 ( θ i - θ ) + β 4 y 0 γ 2 n 1 ,
β 3 = cos g D - L n 0 g n 1 sin g D ,
β 4 = - n 0 g sin g D ,

Metrics