Abstract

The formation of holographic gratings in silver halide emulsions is limited by scattering from photosensitive grains embedded in these materials. The most serious consequence of this effect is a sharp reduction in the diffraction efficiency of a volume hologram reconstructed at the formation angle. This has been attributed to a noise grating, resulting from the interference between a beam illuminating the emulsion and scattered light. Although the presence of these gratings has previously been reported, their dependence on the relative orientation of the polarization of the construction and reconstruction beams has not been discussed. This report shows that the correct relative polarization orientation reduces the detrimental effects of these gratings and improves the efficiency of holograms formed in silver halide emulsions.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Phillips, A. A. Ward, R. Colen, D. Porter, “Advances in Holographic Bleaches,” Photogr. Sci. Eng. 24, 120 (1979).
  2. Ilford Technical Information, Red Sensitive Holographic Film, 15718.GB.
  3. M. R. B. Forshaw, “Explanation of the Diffraction Fine-Structure in Overexposed Thick Holograms,” Opt. Commun. 15, 218 (1975).
    [CrossRef]
  4. J. M. Moran, I. P. Kaminow, “Properties of Holographic Gratings Photoinduced in Polymethyl Methacrylate,” Appl. Opt. 12, 1964 (1973).
    [CrossRef] [PubMed]
  5. M. R. B. Forshaw, “Explanation of the Two-Ring Diffraction Phenomenon Observed by Moran and Kaminow,” Appl. Opt. 13, 2 (1974).
    [CrossRef] [PubMed]
  6. R. Magmusson, T. K. Gaylord, “Laser Scattering Induced Holograms in Lithium Niobate,” Appl. Opt. 13, 1545 (1974).
  7. R. R. A. Syms, L. Solymar, “Noise Gratings in Silver Halide Volume Holograms,” Appl. Phys. B 30, 177 (1983).
    [CrossRef]
  8. R. R. A. Syms, L. Solymar, “Noise Gratings in Photographic Emulsion,” Opt. Commun. 43, 107 (1982).
    [CrossRef]
  9. K. Biedermann, “The Scattered Flux Spectrum of Photographic Materials for Holography,” Optik 31, 367 (1970).
  10. A. A. Ward, J. M. Heaton, L. Solymar, “Efficient Noise Gratings in Silver Halide Emulsions,” Opt. Quant. 16, 36 (1984).
  11. G. D. G. Riddy, L. Solymar, “Theoretical Model of Reconstructed Scatter in Volume Holograms,” Electron. Lett. 22, 872 (1986).
    [CrossRef]
  12. R. R. A. Syms, L. Solymar, “The Effect of Swelling on Volume Holograms Formed in Bleached Photographic Emulsion,” Opt. Acta. 31, 149 (1984).
    [CrossRef]
  13. D. J. Cooke, A. A. Ward, “Reflection-Hologram Processing for High Efficiency in Silver-Halide Emulsions,” Appl. Opt. 23, 934 (1924).
    [CrossRef]
  14. J. Crespo, A. Fimia, J. A. Quintana, “Fixation-free Methods in Bleached Reflection Holography,” Appl. Opt. 25, 1642 (1986).
    [CrossRef] [PubMed]
  15. G. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), p. 64.
  16. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

1986 (2)

G. D. G. Riddy, L. Solymar, “Theoretical Model of Reconstructed Scatter in Volume Holograms,” Electron. Lett. 22, 872 (1986).
[CrossRef]

J. Crespo, A. Fimia, J. A. Quintana, “Fixation-free Methods in Bleached Reflection Holography,” Appl. Opt. 25, 1642 (1986).
[CrossRef] [PubMed]

1984 (2)

A. A. Ward, J. M. Heaton, L. Solymar, “Efficient Noise Gratings in Silver Halide Emulsions,” Opt. Quant. 16, 36 (1984).

R. R. A. Syms, L. Solymar, “The Effect of Swelling on Volume Holograms Formed in Bleached Photographic Emulsion,” Opt. Acta. 31, 149 (1984).
[CrossRef]

1983 (1)

R. R. A. Syms, L. Solymar, “Noise Gratings in Silver Halide Volume Holograms,” Appl. Phys. B 30, 177 (1983).
[CrossRef]

1982 (1)

R. R. A. Syms, L. Solymar, “Noise Gratings in Photographic Emulsion,” Opt. Commun. 43, 107 (1982).
[CrossRef]

1979 (1)

N. J. Phillips, A. A. Ward, R. Colen, D. Porter, “Advances in Holographic Bleaches,” Photogr. Sci. Eng. 24, 120 (1979).

1975 (1)

M. R. B. Forshaw, “Explanation of the Diffraction Fine-Structure in Overexposed Thick Holograms,” Opt. Commun. 15, 218 (1975).
[CrossRef]

1974 (2)

1973 (1)

1970 (1)

K. Biedermann, “The Scattered Flux Spectrum of Photographic Materials for Holography,” Optik 31, 367 (1970).

1969 (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

1924 (1)

Biedermann, K.

K. Biedermann, “The Scattered Flux Spectrum of Photographic Materials for Holography,” Optik 31, 367 (1970).

Colen, R.

N. J. Phillips, A. A. Ward, R. Colen, D. Porter, “Advances in Holographic Bleaches,” Photogr. Sci. Eng. 24, 120 (1979).

Cooke, D. J.

Crespo, J.

Fimia, A.

Forshaw, M. R. B.

M. R. B. Forshaw, “Explanation of the Diffraction Fine-Structure in Overexposed Thick Holograms,” Opt. Commun. 15, 218 (1975).
[CrossRef]

M. R. B. Forshaw, “Explanation of the Two-Ring Diffraction Phenomenon Observed by Moran and Kaminow,” Appl. Opt. 13, 2 (1974).
[CrossRef] [PubMed]

Gaylord, T. K.

Heaton, J. M.

A. A. Ward, J. M. Heaton, L. Solymar, “Efficient Noise Gratings in Silver Halide Emulsions,” Opt. Quant. 16, 36 (1984).

Kaminow, I. P.

Kogelnik, H.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Magmusson, R.

Moran, J. M.

Phillips, N. J.

N. J. Phillips, A. A. Ward, R. Colen, D. Porter, “Advances in Holographic Bleaches,” Photogr. Sci. Eng. 24, 120 (1979).

Porter, D.

N. J. Phillips, A. A. Ward, R. Colen, D. Porter, “Advances in Holographic Bleaches,” Photogr. Sci. Eng. 24, 120 (1979).

Quintana, J. A.

Riddy, G. D. G.

G. D. G. Riddy, L. Solymar, “Theoretical Model of Reconstructed Scatter in Volume Holograms,” Electron. Lett. 22, 872 (1986).
[CrossRef]

Solymar, L.

G. D. G. Riddy, L. Solymar, “Theoretical Model of Reconstructed Scatter in Volume Holograms,” Electron. Lett. 22, 872 (1986).
[CrossRef]

A. A. Ward, J. M. Heaton, L. Solymar, “Efficient Noise Gratings in Silver Halide Emulsions,” Opt. Quant. 16, 36 (1984).

R. R. A. Syms, L. Solymar, “The Effect of Swelling on Volume Holograms Formed in Bleached Photographic Emulsion,” Opt. Acta. 31, 149 (1984).
[CrossRef]

R. R. A. Syms, L. Solymar, “Noise Gratings in Silver Halide Volume Holograms,” Appl. Phys. B 30, 177 (1983).
[CrossRef]

R. R. A. Syms, L. Solymar, “Noise Gratings in Photographic Emulsion,” Opt. Commun. 43, 107 (1982).
[CrossRef]

Syms, R. R. A.

R. R. A. Syms, L. Solymar, “The Effect of Swelling on Volume Holograms Formed in Bleached Photographic Emulsion,” Opt. Acta. 31, 149 (1984).
[CrossRef]

R. R. A. Syms, L. Solymar, “Noise Gratings in Silver Halide Volume Holograms,” Appl. Phys. B 30, 177 (1983).
[CrossRef]

R. R. A. Syms, L. Solymar, “Noise Gratings in Photographic Emulsion,” Opt. Commun. 43, 107 (1982).
[CrossRef]

van de Hulst, G. C.

G. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), p. 64.

Ward, A. A.

A. A. Ward, J. M. Heaton, L. Solymar, “Efficient Noise Gratings in Silver Halide Emulsions,” Opt. Quant. 16, 36 (1984).

N. J. Phillips, A. A. Ward, R. Colen, D. Porter, “Advances in Holographic Bleaches,” Photogr. Sci. Eng. 24, 120 (1979).

D. J. Cooke, A. A. Ward, “Reflection-Hologram Processing for High Efficiency in Silver-Halide Emulsions,” Appl. Opt. 23, 934 (1924).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (1)

R. R. A. Syms, L. Solymar, “Noise Gratings in Silver Halide Volume Holograms,” Appl. Phys. B 30, 177 (1983).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Electron. Lett. (1)

G. D. G. Riddy, L. Solymar, “Theoretical Model of Reconstructed Scatter in Volume Holograms,” Electron. Lett. 22, 872 (1986).
[CrossRef]

Opt. Acta. (1)

R. R. A. Syms, L. Solymar, “The Effect of Swelling on Volume Holograms Formed in Bleached Photographic Emulsion,” Opt. Acta. 31, 149 (1984).
[CrossRef]

Opt. Commun. (2)

R. R. A. Syms, L. Solymar, “Noise Gratings in Photographic Emulsion,” Opt. Commun. 43, 107 (1982).
[CrossRef]

M. R. B. Forshaw, “Explanation of the Diffraction Fine-Structure in Overexposed Thick Holograms,” Opt. Commun. 15, 218 (1975).
[CrossRef]

Opt. Quant. (1)

A. A. Ward, J. M. Heaton, L. Solymar, “Efficient Noise Gratings in Silver Halide Emulsions,” Opt. Quant. 16, 36 (1984).

Optik (1)

K. Biedermann, “The Scattered Flux Spectrum of Photographic Materials for Holography,” Optik 31, 367 (1970).

Photogr. Sci. Eng. (1)

N. J. Phillips, A. A. Ward, R. Colen, D. Porter, “Advances in Holographic Bleaches,” Photogr. Sci. Eng. 24, 120 (1979).

Other (2)

Ilford Technical Information, Red Sensitive Holographic Film, 15718.GB.

G. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), p. 64.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Arrangement for recording gratings: (a) single-beam exposures; (b) transmission gratings; and (c) reflection gratings. The glass substrate is index matched to prevent spurious reflection gratings for single-beam exposures and transmission gratings. S and R are the exposing beams.

Fig. 2
Fig. 2

Transmittance vs reconstruction angle for emulsion: (a) after fixing; (b) unexposed and processed; and (c) unexposed and unprocessed. Solid curves indicate a perpendicular polarized reconstruction beam and dashed curves a parallel polarized reconstruction beam.

Fig. 3
Fig. 3

Transmittance vs reconstruction angle for noise grating recorded with construction beam polarized perpendicular to the plane of incidence. The solid curve is transmittance with perpendicular polarized reconstruction beam; the dashed curve is transmittance of parallel polarized reconstruction beam.

Fig. 4
Fig. 4

Transmittance vs reconstruction angle for a noise grating recorded with parallel polarized construction beam. The solid curve indicates the transmittance of a perpendicular polarized reconstruction beam; the dashed curve is the transmittance of parallel polarized reconstruction beam.

Fig. 5
Fig. 5

Diffraction efficiency vs reconstruction angle for an unslanted transmission grating. Construction beams polarized perpendicular to the plane of incidence. The solid curve is the efficiency of the perpendicular polarized reconstruction beam; the dashed curve shows the efficiency of the parallel polarized reconstruction beam.

Fig. 6
Fig. 6

Diffraction efficiency vs reconstruction angle for a reflection grating formed with perpendicular polarized construction beams. The solid curve is the efficiency of a perpendicular polarized reconstruction beam; the dashed curve is the efficiency with a parallel reconstruction beam.

Fig. 7
Fig. 7

Scattering from holographic emulsion: (a) unexposed and unprocessed emulsion with perpendicular polarized illumination; (b) same as (a) but with parallel polarized illumination; (c) unexposed and processed emulsion with perpendicular polarized illumination; (d) same as (c) but with parallel polarized illumination.

Fig. 8
Fig. 8

Scattered light from noise gratings: (a) construction beam parallel/reconstruction beam perpendicular polarized; (b) construction beam parallel/reconstruction beam parallel; (c) construction beam perpendicular/reconstruction beam perpendicular; and (d) construction beam perpendicular/reconstruction beam parallel.

Fig. 9
Fig. 9

Geometry for dipole scattering: p is the dipole, A is the observation point, and θ is the angle from a normal through the center of the dipole to the observation point A.

Fig. 10
Fig. 10

Light scattering intensity profile in a plane: (a) perpendicular and (b) parallel to the dipole vector p. ρ and σ are, respectively, the propagation vectors of the illuminating and scattered beams, while r ^ and ŝ are the corresponding unit vectors in the direction of the polarizations of the fields.

Fig. 11
Fig. 11

Illumination of noise gratings: (a) grating formed with a field in the x direction; (b) grating formed with a field in the y direction. κ is the grating coupling coefficient, êr and ês are, respectively, the unit vectors in the directions polarization of the reconstruction and signal beams.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

p = α E i ,
E s ( θ ) = k 2 p cos θ r exp ( - j k r ) ,
I = E s + E r 2 + E s ( θ ) s ^ exp ( - j ϕ s ) + E r r ^ exp ( - j ϕ r ) 2 = E s ( θ ) 2 + E r 2 + 2 Re { E s ( θ ) E r * } s ^ · r ^ ,
η ~ κ 0 2 ( θ ) ,
κ 0 ( θ ) ~ n 1 ~ Re { E s ( θ ) E r * } s ^ · r ^ .
κ ( θ ) = κ 0 ( θ ) ( e ^ r · e ^ s ) = κ 0 ( θ ) cos ( θ ) ,

Metrics