Abstract

It is demonstrated that excited singlet state absorption and stimulated emission or triplet state absorption can be utilized for spatial light modulation by organic molecules. A kinetic analysis shows that for some favorable cases the modulating laser intensity needed to achieve 45% modulation can be as low as 100 nW/μm2. The potential for spatial light modulation is discussed.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. T. S. Yu, Optical Information Processing (Wiley, New York, 1983).
  2. A. R. Tanguay, “Material Requirements for Optical Processing and Computing,” Opt. Eng. 24, 2 (1985).
  3. D. S. Chemla, J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1987).
  4. D. S. Williams, Ed., Nonlinear Optical Properties of Organic and Polymeric Materials, ACS Symposium Series 233 (American Chemical Society, Washington, DC, 1983).
    [CrossRef]
  5. C. J. G. Kirkby, I. Bennion, “Organic Photochromics for Spatial Light Modulation,” IEE Proc. 133, 98 (1986).
    [CrossRef]
  6. M. Orenstein, J. Katriel, S. Speiser, “Optical Bistability in Molecular Systems,” in Methods of Laser Spectroscopy, Y. Prior, A. Ben-Reuven, M. Rusenbluh, Eds. (Plenum, New York, 1986), p. 335; “Application of the Nonlinear Eikonal Treatment to the Design of Optical Bistable Devices,” Proc. Soc. Photo-Opt. Instrum, Eng. 700, 96 (1986); “Optical Bistability in Molecular Systems Exhibiting Nonlinear Absorption,” Phys. Rev. A 35, 2157 (1987).
    [CrossRef]
  7. M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear-Optical Interactions in Fluorecein-Doped Boric Acid Glass,” Phys. Rev. A 34, 2026 (1986).
    [CrossRef] [PubMed]
  8. S. Speiser, F. L. Chisena, “Optical Bistability in Fluorescein Dyes,” Appl. Phys. B 45, 137 (1988).
    [CrossRef]
  9. S. Speiser, N. Shakur, “Photoquenching Parameters for Commonly Used Laser Dyes,” Appl. Phys. B 38, 191 (1985).
    [CrossRef]
  10. I. Carmichael, G. L. Hug, “Triplet–Triplet Absorption Spectra of Organic Molecules in Condensed Phases,” J. Phys. Chem. Ref. Data 15, 1 (1986).
    [CrossRef]
  11. M. Orenstein, S. Speiser, “Spatial Light Modulation by Nonlinear Absorbers,” J. Appl. Phys. 66 (1989).
    [CrossRef]

1989 (1)

M. Orenstein, S. Speiser, “Spatial Light Modulation by Nonlinear Absorbers,” J. Appl. Phys. 66 (1989).
[CrossRef]

1988 (1)

S. Speiser, F. L. Chisena, “Optical Bistability in Fluorescein Dyes,” Appl. Phys. B 45, 137 (1988).
[CrossRef]

1986 (3)

C. J. G. Kirkby, I. Bennion, “Organic Photochromics for Spatial Light Modulation,” IEE Proc. 133, 98 (1986).
[CrossRef]

M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear-Optical Interactions in Fluorecein-Doped Boric Acid Glass,” Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

I. Carmichael, G. L. Hug, “Triplet–Triplet Absorption Spectra of Organic Molecules in Condensed Phases,” J. Phys. Chem. Ref. Data 15, 1 (1986).
[CrossRef]

1985 (2)

A. R. Tanguay, “Material Requirements for Optical Processing and Computing,” Opt. Eng. 24, 2 (1985).

S. Speiser, N. Shakur, “Photoquenching Parameters for Commonly Used Laser Dyes,” Appl. Phys. B 38, 191 (1985).
[CrossRef]

Bennion, I.

C. J. G. Kirkby, I. Bennion, “Organic Photochromics for Spatial Light Modulation,” IEE Proc. 133, 98 (1986).
[CrossRef]

Boyd, R. W.

M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear-Optical Interactions in Fluorecein-Doped Boric Acid Glass,” Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

Carmichael, I.

I. Carmichael, G. L. Hug, “Triplet–Triplet Absorption Spectra of Organic Molecules in Condensed Phases,” J. Phys. Chem. Ref. Data 15, 1 (1986).
[CrossRef]

Chemla, D. S.

D. S. Chemla, J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1987).

Chisena, F. L.

S. Speiser, F. L. Chisena, “Optical Bistability in Fluorescein Dyes,” Appl. Phys. B 45, 137 (1988).
[CrossRef]

Hug, G. L.

I. Carmichael, G. L. Hug, “Triplet–Triplet Absorption Spectra of Organic Molecules in Condensed Phases,” J. Phys. Chem. Ref. Data 15, 1 (1986).
[CrossRef]

Katriel, J.

M. Orenstein, J. Katriel, S. Speiser, “Optical Bistability in Molecular Systems,” in Methods of Laser Spectroscopy, Y. Prior, A. Ben-Reuven, M. Rusenbluh, Eds. (Plenum, New York, 1986), p. 335; “Application of the Nonlinear Eikonal Treatment to the Design of Optical Bistable Devices,” Proc. Soc. Photo-Opt. Instrum, Eng. 700, 96 (1986); “Optical Bistability in Molecular Systems Exhibiting Nonlinear Absorption,” Phys. Rev. A 35, 2157 (1987).
[CrossRef]

Kirkby, C. J. G.

C. J. G. Kirkby, I. Bennion, “Organic Photochromics for Spatial Light Modulation,” IEE Proc. 133, 98 (1986).
[CrossRef]

Kramer, M. A.

M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear-Optical Interactions in Fluorecein-Doped Boric Acid Glass,” Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

Orenstein, M.

M. Orenstein, S. Speiser, “Spatial Light Modulation by Nonlinear Absorbers,” J. Appl. Phys. 66 (1989).
[CrossRef]

M. Orenstein, J. Katriel, S. Speiser, “Optical Bistability in Molecular Systems,” in Methods of Laser Spectroscopy, Y. Prior, A. Ben-Reuven, M. Rusenbluh, Eds. (Plenum, New York, 1986), p. 335; “Application of the Nonlinear Eikonal Treatment to the Design of Optical Bistable Devices,” Proc. Soc. Photo-Opt. Instrum, Eng. 700, 96 (1986); “Optical Bistability in Molecular Systems Exhibiting Nonlinear Absorption,” Phys. Rev. A 35, 2157 (1987).
[CrossRef]

Shakur, N.

S. Speiser, N. Shakur, “Photoquenching Parameters for Commonly Used Laser Dyes,” Appl. Phys. B 38, 191 (1985).
[CrossRef]

Speiser, S.

M. Orenstein, S. Speiser, “Spatial Light Modulation by Nonlinear Absorbers,” J. Appl. Phys. 66 (1989).
[CrossRef]

S. Speiser, F. L. Chisena, “Optical Bistability in Fluorescein Dyes,” Appl. Phys. B 45, 137 (1988).
[CrossRef]

S. Speiser, N. Shakur, “Photoquenching Parameters for Commonly Used Laser Dyes,” Appl. Phys. B 38, 191 (1985).
[CrossRef]

M. Orenstein, J. Katriel, S. Speiser, “Optical Bistability in Molecular Systems,” in Methods of Laser Spectroscopy, Y. Prior, A. Ben-Reuven, M. Rusenbluh, Eds. (Plenum, New York, 1986), p. 335; “Application of the Nonlinear Eikonal Treatment to the Design of Optical Bistable Devices,” Proc. Soc. Photo-Opt. Instrum, Eng. 700, 96 (1986); “Optical Bistability in Molecular Systems Exhibiting Nonlinear Absorption,” Phys. Rev. A 35, 2157 (1987).
[CrossRef]

Tanguay, A. R.

A. R. Tanguay, “Material Requirements for Optical Processing and Computing,” Opt. Eng. 24, 2 (1985).

Tompkin, W. R.

M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear-Optical Interactions in Fluorecein-Doped Boric Acid Glass,” Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

Yu, F. T. S.

F. T. S. Yu, Optical Information Processing (Wiley, New York, 1983).

Zyss, J.

D. S. Chemla, J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1987).

Appl. Phys. B (2)

S. Speiser, F. L. Chisena, “Optical Bistability in Fluorescein Dyes,” Appl. Phys. B 45, 137 (1988).
[CrossRef]

S. Speiser, N. Shakur, “Photoquenching Parameters for Commonly Used Laser Dyes,” Appl. Phys. B 38, 191 (1985).
[CrossRef]

IEE Proc. (1)

C. J. G. Kirkby, I. Bennion, “Organic Photochromics for Spatial Light Modulation,” IEE Proc. 133, 98 (1986).
[CrossRef]

J. Appl. Phys. (1)

M. Orenstein, S. Speiser, “Spatial Light Modulation by Nonlinear Absorbers,” J. Appl. Phys. 66 (1989).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

I. Carmichael, G. L. Hug, “Triplet–Triplet Absorption Spectra of Organic Molecules in Condensed Phases,” J. Phys. Chem. Ref. Data 15, 1 (1986).
[CrossRef]

Opt. Eng. (1)

A. R. Tanguay, “Material Requirements for Optical Processing and Computing,” Opt. Eng. 24, 2 (1985).

Phys. Rev. A (1)

M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear-Optical Interactions in Fluorecein-Doped Boric Acid Glass,” Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

Other (4)

F. T. S. Yu, Optical Information Processing (Wiley, New York, 1983).

D. S. Chemla, J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1987).

D. S. Williams, Ed., Nonlinear Optical Properties of Organic and Polymeric Materials, ACS Symposium Series 233 (American Chemical Society, Washington, DC, 1983).
[CrossRef]

M. Orenstein, J. Katriel, S. Speiser, “Optical Bistability in Molecular Systems,” in Methods of Laser Spectroscopy, Y. Prior, A. Ben-Reuven, M. Rusenbluh, Eds. (Plenum, New York, 1986), p. 335; “Application of the Nonlinear Eikonal Treatment to the Design of Optical Bistable Devices,” Proc. Soc. Photo-Opt. Instrum, Eng. 700, 96 (1986); “Optical Bistability in Molecular Systems Exhibiting Nonlinear Absorption,” Phys. Rev. A 35, 2157 (1987).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic level diagram for a large molecule showing singlet (Si) and triplet (Ti) manifolds, radiative (→) and nonradiative (⇝) transition. Absorption cross sections are σij(m), aij(P), τji are the level lifetimes, and kISC denotes the intersystem crossing rate.

Fig. 2
Fig. 2

Amplitude modulation of an input probe intensity Iin as a function of modulating laser intensity P for various values of excited S1 state absorption (α > 0) and stimulated emission (α < 0) coefficients.

Tables (1)

Tables Icon

Table I Definition of Rate Parameters Utilized in Obtaining the Intensity-Dependent Complex of Index of Refraction η(I) [Eq. (6)] for the Various Excitation Routes Depicted in Fig. 1

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

d N / d t = O ^ N ,
N ˜ = [ N ( S 0 ) , N ( S 1 ) , N ( S n ) , N ( T 1 ) , N ( T n ) ] ,
O ^ = ( - σ 01 s ( m ) I m 1 / τ 10 s 0 1 / τ 10 T 0 σ 01 s ( m ) I m - [ 1 / τ 10 s + k I S C + σ 1 n s ( m ) I m ] 1 / τ n 1 s 0 0 0 σ 1 n s ( m ) I m - 1 / τ n 1 s 0 0 0 k I S C 0 - σ 1 n T ( m ) I m + 1 / τ 10 T 1 / τ n 1 T 0 0 0 σ 1 n T ( m ) I m - 1 / τ n 1 T ) ,
N ( I ) = [ N ( S 0 ) / ( k I S C + 1 / τ 10 S ) ] ( k I S C + 1 / τ 10 S σ 01 S ( m ) I m σ 01 S ( m ) σ 1 n S ( m ) τ n 1 S I m 2 σ 01 S ( m ) k I S C τ 10 T I m σ 01 S ( m ) k I S C τ 10 T σ 1 n T ( m ) τ n 1 T I m 2 ) ,
N ( S 0 ) = N / { 1 + σ 01 S ( m ) τ 10 S ( 1 + k I S C τ 10 T ) I m / ( 1 + k I S C τ 10 S ) + σ 01 S ( m ) τ 10 S [ σ 1 n S ( m ) τ n 1 S + k I S C τ 10 T σ 1 n T ( m ) τ n 1 T ] I m 2 / ( 1 + k I S C τ 10 S ) } ,
η ( I ) = N ( I m ) · η + i ( λ 0 / 4 π ) N ( I m ) · σ = η D ( I m ) + i ( λ 0 / 4 π ) α ( I m ) ,
η = ( η S 0 , η S 1 , η S n , η T 1 , η T n ) .
σ = ( σ 01 S , σ 1 n S , 0 , σ 1 n T , 0 ) ,
α ( I m = N ( I m ) · σ = α 0 ( 1 + B I m ) / ( 1 + C I m + D I m 2 )
η D = ( A + B I m ) / ( 1 + C I m + D I m 2 ) ,
N ( S 1 ) = N σ 01 S ( m ) I m τ 10 S / [ 1 + σ 01 S ( m ) τ 10 S ( 1 + k I S C τ 10 T ) I m ] .
N ( S 1 ) = N σ 01 S ( m ) I m / [ 1 + σ 01 S ( m ) τ 10 S I m ] .
I out / I in = exp [ - N ( S 1 ) σ eff L ] = exp [ - N τ 10 S ( m ) I p σ eff L / ( 1 + σ 01 S ( m ) τ 10 S I p ) ] = exp [ - α P / ( 1 + P ) ] ,
σ eff = σ 1 n S ( P ) - σ e S ( P ) ,
α = N σ eff L ,
P = σ 01 S ( m ) τ 10 S I m .
I out / I in = exp [ - N ( S 0 ) σ 01 S ( P ) L ] = exp [ N σ 01 S ( P ) L / ( 1 + σ 01 S ( m ) τ 10 S I m ) ] = exp [ - α / ( 1 + P ) ] .
N ( T 1 ) = N ( S 0 ) σ 01 S ( m ) k I S C τ 10 T I m / ( k I S C + 1 / τ 10 S ) .
N ( T 1 ) = N σ S 01 ( m ) k I S C τ 10 T I m / ( k I S C + 1 / τ 10 S ) × [ 1 + σ 01 S ( m ) τ 10 S ( 1 + k I S C τ 10 T ) I m / ( 1 + k I S C τ 10 T ) ]
= N k I S C τ 10 T P / [ 1 + k I S C τ 10 S + ( 1 + k I S C τ 10 T ) P ] .
I out / I in = exp [ - N ( T 1 ) σ 1 n T ( P ) L ] = exp [ - β ] .
N I S O = N ( S 1 ) k I S O / ( 1 / τ 10 S + k I S O + k I S C ) .
N I S O = N ( T 1 ) k I S O / ( k I S O + 1 / τ 10 T ) ~ N I S O / ( k I S O + 1 / τ 10 T ) .
k I S O 1 / τ 10 T
δ = I R ( L , I W ) / I R ( L , O ) = exp [ - α R ( I W ) L ] / exp [ - N σ 01 S ( R ) L ] = exp [ N σ 01 S ( R ) - α R ( I W ) ] L ,
σ 01 S ( R ) = σ 01 S ( P ) , α R ( I W ) = N ( I W ) · σ .
α R ( I W ) = N ( S 1 ) σ eff ,
δ = exp [ α R ( 0 ) - α P / ( 1 + P ) ] ,
σ 10 S ( W ) = 2.7 × 10 - 6 cm 2 / molecules , σ 10 S ( R ) = 0 , σ e S ( R ) = 0 , σ 1 n S ( R ) = 1.03 × 10 - 16 cm 2 / molecule .
S = [ α R ( I W ) - α R ( 0 ) ] / I W = - ln δ / I W ;

Metrics