Abstract

Amorphous silicon carbide films formed by sputtering techniques are shown to have high reflectance in the extreme ultraviolet spectral region. X-ray scattering verifies that the atomic arrangements in these films are amorphous, while Auger electron spectroscopy and Rutherford backscattering spectroscopy show that the films have composition close to stoichiometric SiC, although slightly C-rich, with low impurity levels. Reflectance vs incidence angle measurements from 24 to 1216 Å were used to derive optical constants of this material, which are presented here. Additionally, the measured extreme ultraviolet efficiency of a diffraction grating overcoated with sputtered amorphous silicon carbide is presented, demonstrating the feasibility of using these films as coatings for EUV optics.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Kelly, J. B. West, D. E. Lloyd, “Reflectance of Silicon Carbide in the Vacuum Ultraviolet,” J. Phys. D 14, 401 (1981).
    [Crossref]
  2. S. Mrowka, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160 (1986).
  3. D. L. Windt, B. Bach, “Ion Beam Deposited Silicon Carbide on Glass Optics and Replica Gratings,” Appl. Opt. 23, 3047 (1984).
    [Crossref] [PubMed]
  4. Sputtering targets were obtained from Pure Tech, Inc., Ossining, NY.
  5. D. L. Windt, “The Optical Properties of 21 Thin Film Materials in the 10 eV to 500 eV Photon Energy Region,” Ph.D. Thesis, U. Colorado (1987) (unpublished).
  6. D. L. Windt et al., “Optical Constants for Thin Films of C, Diamond, Al, Si, and CVD SiC from 24 Å to 1216 Å,” Appl. Opt. 27, 279 (1988).
    [Crossref] [PubMed]
  7. D. L. Windt, W. Cash, “The Soft X-ray/EUV Calibration Facility at the University of Colorado,” Proc. Soc. Photo-Opt. Instrum. Eng. 689, 167 (1986).
  8. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for the 100 to 2000 eV Photon Energy Region,” AIP Conf. Proc. 75, 340 (1981).
    [Crossref]
  9. J. Osantowski, data presented at the Glancing Incidence Optics Fabrication Workshop, hosted by the Optics Branch of the Goddard Space Flight Center, Annapolis, MD, 1–4 Apr. 1985.
  10. V. Rehn, J. L. Stanford, V. O. Jones, W. J. Choyke, “Optical Constants and Reflectivity of Type 6H SiC in the Range 4–25 eV,” in Proceedings, Thirteenth International Conference on Physics Semiconductors, Roma, Italy (1976), p. 985.
  11. E. D. Palik, in Handbook of Optical Constants of Solids, E. D. Palik, Ed. (Academic, Orlando, 1985).
  12. A complete discussion of the experimental uncertainty in the derived optical constants can be found in Refs. 5 and 6.
  13. The grating was ruled by Hyperfine, Inc., Boulder, CO.
  14. J. T. Cox, G. Hass, J. B. Ramsey, W. R. Hunter, “Reflectance and Optical Constants of Evaporated Osmium in the Vacuum Ultraviolet from 300 Å to 2000 Å,” J. Opt. Soc. Am. 63, 435 (1973).
    [Crossref]
  15. J. B. Kortright, P. Plag, R. C. C. Perera, P. L. Cowan, D. W. Lindle, B. Karlin, “Multilayer-Coated Mirrors as Power Filters in Synchrotron Radiation Beamlines,” Nucl. Inst. Methods 4266, 452 (1988).

1988 (2)

D. L. Windt et al., “Optical Constants for Thin Films of C, Diamond, Al, Si, and CVD SiC from 24 Å to 1216 Å,” Appl. Opt. 27, 279 (1988).
[Crossref] [PubMed]

J. B. Kortright, P. Plag, R. C. C. Perera, P. L. Cowan, D. W. Lindle, B. Karlin, “Multilayer-Coated Mirrors as Power Filters in Synchrotron Radiation Beamlines,” Nucl. Inst. Methods 4266, 452 (1988).

1986 (2)

S. Mrowka, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160 (1986).

D. L. Windt, W. Cash, “The Soft X-ray/EUV Calibration Facility at the University of Colorado,” Proc. Soc. Photo-Opt. Instrum. Eng. 689, 167 (1986).

1984 (1)

1981 (2)

M. M. Kelly, J. B. West, D. E. Lloyd, “Reflectance of Silicon Carbide in the Vacuum Ultraviolet,” J. Phys. D 14, 401 (1981).
[Crossref]

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for the 100 to 2000 eV Photon Energy Region,” AIP Conf. Proc. 75, 340 (1981).
[Crossref]

1973 (1)

Bach, B.

Bowyer, S.

S. Mrowka, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160 (1986).

Cash, W.

D. L. Windt, W. Cash, “The Soft X-ray/EUV Calibration Facility at the University of Colorado,” Proc. Soc. Photo-Opt. Instrum. Eng. 689, 167 (1986).

Choyke, W. J.

S. Mrowka, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160 (1986).

V. Rehn, J. L. Stanford, V. O. Jones, W. J. Choyke, “Optical Constants and Reflectivity of Type 6H SiC in the Range 4–25 eV,” in Proceedings, Thirteenth International Conference on Physics Semiconductors, Roma, Italy (1976), p. 985.

Cowan, P. L.

J. B. Kortright, P. Plag, R. C. C. Perera, P. L. Cowan, D. W. Lindle, B. Karlin, “Multilayer-Coated Mirrors as Power Filters in Synchrotron Radiation Beamlines,” Nucl. Inst. Methods 4266, 452 (1988).

Cox, J. T.

Fujikawa, B. K.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for the 100 to 2000 eV Photon Energy Region,” AIP Conf. Proc. 75, 340 (1981).
[Crossref]

Hass, G.

Henke, B. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for the 100 to 2000 eV Photon Energy Region,” AIP Conf. Proc. 75, 340 (1981).
[Crossref]

Hunter, W. R.

Jelinsky, P.

S. Mrowka, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160 (1986).

Jones, V. O.

V. Rehn, J. L. Stanford, V. O. Jones, W. J. Choyke, “Optical Constants and Reflectivity of Type 6H SiC in the Range 4–25 eV,” in Proceedings, Thirteenth International Conference on Physics Semiconductors, Roma, Italy (1976), p. 985.

Karlin, B.

J. B. Kortright, P. Plag, R. C. C. Perera, P. L. Cowan, D. W. Lindle, B. Karlin, “Multilayer-Coated Mirrors as Power Filters in Synchrotron Radiation Beamlines,” Nucl. Inst. Methods 4266, 452 (1988).

Kelly, M. M.

M. M. Kelly, J. B. West, D. E. Lloyd, “Reflectance of Silicon Carbide in the Vacuum Ultraviolet,” J. Phys. D 14, 401 (1981).
[Crossref]

Kortright, J. B.

J. B. Kortright, P. Plag, R. C. C. Perera, P. L. Cowan, D. W. Lindle, B. Karlin, “Multilayer-Coated Mirrors as Power Filters in Synchrotron Radiation Beamlines,” Nucl. Inst. Methods 4266, 452 (1988).

Lee, P.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for the 100 to 2000 eV Photon Energy Region,” AIP Conf. Proc. 75, 340 (1981).
[Crossref]

Lindle, D. W.

J. B. Kortright, P. Plag, R. C. C. Perera, P. L. Cowan, D. W. Lindle, B. Karlin, “Multilayer-Coated Mirrors as Power Filters in Synchrotron Radiation Beamlines,” Nucl. Inst. Methods 4266, 452 (1988).

Lloyd, D. E.

M. M. Kelly, J. B. West, D. E. Lloyd, “Reflectance of Silicon Carbide in the Vacuum Ultraviolet,” J. Phys. D 14, 401 (1981).
[Crossref]

Mrowka, S.

S. Mrowka, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160 (1986).

Osantowski, J.

J. Osantowski, data presented at the Glancing Incidence Optics Fabrication Workshop, hosted by the Optics Branch of the Goddard Space Flight Center, Annapolis, MD, 1–4 Apr. 1985.

Palik, E. D.

E. D. Palik, in Handbook of Optical Constants of Solids, E. D. Palik, Ed. (Academic, Orlando, 1985).

Perera, R. C. C.

J. B. Kortright, P. Plag, R. C. C. Perera, P. L. Cowan, D. W. Lindle, B. Karlin, “Multilayer-Coated Mirrors as Power Filters in Synchrotron Radiation Beamlines,” Nucl. Inst. Methods 4266, 452 (1988).

Plag, P.

J. B. Kortright, P. Plag, R. C. C. Perera, P. L. Cowan, D. W. Lindle, B. Karlin, “Multilayer-Coated Mirrors as Power Filters in Synchrotron Radiation Beamlines,” Nucl. Inst. Methods 4266, 452 (1988).

Ramsey, J. B.

Rehn, V.

V. Rehn, J. L. Stanford, V. O. Jones, W. J. Choyke, “Optical Constants and Reflectivity of Type 6H SiC in the Range 4–25 eV,” in Proceedings, Thirteenth International Conference on Physics Semiconductors, Roma, Italy (1976), p. 985.

Sanger, G.

S. Mrowka, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160 (1986).

Shimabukuro, R. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for the 100 to 2000 eV Photon Energy Region,” AIP Conf. Proc. 75, 340 (1981).
[Crossref]

Stanford, J. L.

V. Rehn, J. L. Stanford, V. O. Jones, W. J. Choyke, “Optical Constants and Reflectivity of Type 6H SiC in the Range 4–25 eV,” in Proceedings, Thirteenth International Conference on Physics Semiconductors, Roma, Italy (1976), p. 985.

Tanaka, T. J.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for the 100 to 2000 eV Photon Energy Region,” AIP Conf. Proc. 75, 340 (1981).
[Crossref]

West, J. B.

M. M. Kelly, J. B. West, D. E. Lloyd, “Reflectance of Silicon Carbide in the Vacuum Ultraviolet,” J. Phys. D 14, 401 (1981).
[Crossref]

Windt, D. L.

D. L. Windt et al., “Optical Constants for Thin Films of C, Diamond, Al, Si, and CVD SiC from 24 Å to 1216 Å,” Appl. Opt. 27, 279 (1988).
[Crossref] [PubMed]

D. L. Windt, W. Cash, “The Soft X-ray/EUV Calibration Facility at the University of Colorado,” Proc. Soc. Photo-Opt. Instrum. Eng. 689, 167 (1986).

D. L. Windt, B. Bach, “Ion Beam Deposited Silicon Carbide on Glass Optics and Replica Gratings,” Appl. Opt. 23, 3047 (1984).
[Crossref] [PubMed]

D. L. Windt, “The Optical Properties of 21 Thin Film Materials in the 10 eV to 500 eV Photon Energy Region,” Ph.D. Thesis, U. Colorado (1987) (unpublished).

AIP Conf. Proc. (1)

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for the 100 to 2000 eV Photon Energy Region,” AIP Conf. Proc. 75, 340 (1981).
[Crossref]

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

J. Phys. D (1)

M. M. Kelly, J. B. West, D. E. Lloyd, “Reflectance of Silicon Carbide in the Vacuum Ultraviolet,” J. Phys. D 14, 401 (1981).
[Crossref]

Nucl. Inst. Methods (1)

J. B. Kortright, P. Plag, R. C. C. Perera, P. L. Cowan, D. W. Lindle, B. Karlin, “Multilayer-Coated Mirrors as Power Filters in Synchrotron Radiation Beamlines,” Nucl. Inst. Methods 4266, 452 (1988).

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

D. L. Windt, W. Cash, “The Soft X-ray/EUV Calibration Facility at the University of Colorado,” Proc. Soc. Photo-Opt. Instrum. Eng. 689, 167 (1986).

S. Mrowka, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160 (1986).

Other (7)

Sputtering targets were obtained from Pure Tech, Inc., Ossining, NY.

D. L. Windt, “The Optical Properties of 21 Thin Film Materials in the 10 eV to 500 eV Photon Energy Region,” Ph.D. Thesis, U. Colorado (1987) (unpublished).

J. Osantowski, data presented at the Glancing Incidence Optics Fabrication Workshop, hosted by the Optics Branch of the Goddard Space Flight Center, Annapolis, MD, 1–4 Apr. 1985.

V. Rehn, J. L. Stanford, V. O. Jones, W. J. Choyke, “Optical Constants and Reflectivity of Type 6H SiC in the Range 4–25 eV,” in Proceedings, Thirteenth International Conference on Physics Semiconductors, Roma, Italy (1976), p. 985.

E. D. Palik, in Handbook of Optical Constants of Solids, E. D. Palik, Ed. (Academic, Orlando, 1985).

A complete discussion of the experimental uncertainty in the derived optical constants can be found in Refs. 5 and 6.

The grating was ruled by Hyperfine, Inc., Boulder, CO.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Index of refraction for a-SiC vs wavelength from (a) 0 to 200 Å and (b) 200 to 1400 Å and extinction coefficient from (c) 0 to 200 Å and (d) 200 to 1400 Å. The present results are shown as solid circles. Shown also are the data of Henke et al.8 (dot), the CVD SiC data of Windt5 (open circles) and Osantowski9 (dash), and the 6H SiC data of Palik11 (dot–dash).

Fig. 2
Fig. 2

(a) Reflectance of a-SiC vs wavelength at six incidence angles: 0, 45, 60, 75, 85, and 89°. (b) Normal incidence reflectance vs wavelength. The data for CVD SiC of Windt5 (open circles) and for 6H SiC of Palik11 (dot–dash) are shown for comparison in (b).

Fig. 3
Fig. 3

Absolute diffraction efficiencies as a function of wavelength measured with an incidence angle of 15° from the normal. In (a) are the results for an osmium coated grating and in (b) the results for an identical grating coated with sputtered a-SiC. For both plots, the zero-order efficiencies are shown as triangles, the first-order efficiencies as circles, and the second-order efficiencies as squares. The dotted line in (a) is the reflectance of osmium calculated from the thin film data of Cox et al.14 The dotted line in (b) is the reflectance of a-SiC calculated from the optical constants presented in this paper.

Tables (1)

Tables Icon

Table I Optical Constants for Amorphous Silicon Carbide

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

DW = exp [ - 2 ( 2 π σ cos θ λ ) 2 ] ,

Metrics