Abstract

Refinement and thin film synthesis methods were used by members of six different institutions to design anti-reflection coatings for germanium substrates. The solutions are based on the use of zinc sulfide and germanium layers only. Several systems were found with an average reflectance that is less than 1% in the 7.7 to 12.3 μm spectral region.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Baumeister, “Design of Multilayer Filters by Successive Approximations,” J. Opt. Soc. Am. 48, 955 (1958).
    [CrossRef]
  2. J. A. Dobrowolski, “Completely Automatic Synthesis of Optical Thin Film Systems,” Appl. Opt. 4, 937 (1965).
    [CrossRef]
  3. J. A. Dobrowolski, “Subtractive Method of Optical Thin-Film Interference Filter Design,” Appl. Opt. 12, 1885 (1973).
    [CrossRef] [PubMed]
  4. J. A. Dobrowolski, D. Lowe, “Optical Thin Film Synthesis Program Based on the Use of Fourier Transforms,” Appl. Opt. 17, 3039 (1978).
    [CrossRef] [PubMed]
  5. J. F. Tang, O. Zheng, “Automatic Design of Optical Thin-Film Systems—Merit Function and Numerical Optimization Method,” J. Opt. Soc. Am. 72, 1522 (1982).
    [CrossRef]
  6. W. Southwell, “Coating Design Using Very Thin High-Index and Low-Index Layers,” Appl. Opt. 24, 457 (1985).
    [CrossRef] [PubMed]
  7. O. S. Heavens, H. M. Liddell, “Least Squares Method for the Automatic Design of Multi-layers,” Opt. Acta 15, 129 (1968).
  8. A. Bloom, “Refining and Optimization in Multilayers,” Appl. Opt. 20, 66 (1981).
    [CrossRef] [PubMed]
  9. P. Baumeister, R. Moore, K. Walsh, “Application of Linear Programming to Antireflection Coating Design,” J. Opt. Soc. Am. 67, 1039 (1977).
    [CrossRef]
  10. R. J. Pegis, D. S. Grey, T. P. Vogl, A. K. Rigler, “The Generalized Orthonormal Optimization Program and its Applications,” in Recent Advances in Optimization Techniques, A. Lavi, T. P. Vogl, Eds. (Wiley, New York, 1965).
  11. W. J. Wild, H. Bukay, “Thin Film Multilayer Design Optimization Using a Monte Carlo Approach,” Opt. Lett. 11, 745 (1986).
    [CrossRef] [PubMed]
  12. C. Holm, “Optical Thin Film Production with Continuous Reoptimization of Layer Thicknesses,” Appl. Opt. 18, 1978 (1979).
    [CrossRef] [PubMed]
  13. E. Pelletier, “Calcul et Réalisation de Revétements Multidiélectriques Présentant des Caractéristiques Spectrales Imposées,” Thesis, Faculté des Sciences d’Orsay (1970).
  14. C. Ufford, P. W. Baumeister, “Graphical Aids in the Use of Equivalent Index in Multilayer-Filter Design,” J. Opt. Soc. Am. 64, 329 (1974).
    [CrossRef]
  15. G. Matthaei, L. Young, E. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures (McGraw-Hill, New York, 1964), p. 39.
  16. P. W. Baumeister, “Antireflection Coatings with Chebyshev or Butterworh Response: Design,” Appl. Opt. 24, 4568 (1985).
  17. L. I. Epstein, “The Design of Optical Filters,” J. Opt. Soc. Am. 42, 806 (1952).
    [CrossRef]
  18. T. E. Shoup, F. Mistree, Optimization Methods with Applications for Personal Computers (Prentice-Hall, Englewood Cliffs, NJ, 1987).
  19. P. Baumeister, Optical Coating Technology Lecture Notes for the Five Day Short Course Engineering 823.17 at the UCLA Extension (1986), paragraph 4.7.2.
  20. J. A. Dobrowolski, “Versatile Computer Program for Absorbing Thin Film Systems,” Appl. Opt. 20, 74 (1981).
    [CrossRef] [PubMed]
  21. M. C. Ohmer, “Design of Three-Layer Equivalent Films,” J. Opt. Soc. Am. 68, 137 (1978).
    [CrossRef]
  22. J. A. Dobrowolski, “Comparison of the Fourier Transform and Flip-Flop Thin-Film Synthesis Methods,” Appl. Opt. 25, 1966 (1986).
    [CrossRef] [PubMed]
  23. I. Lubezky, E. Ceren, Z. Taubenfeld, H. Zipin, “Efficient and Durable AR Coatings for Ge in the 8–11.5μm Band Using Synthesized Refractive Indices by Evaporation of Homogeneous Mixtures,” Appl. Opt. 22, 1828 (1983).
    [CrossRef] [PubMed]

1986 (2)

1985 (2)

W. Southwell, “Coating Design Using Very Thin High-Index and Low-Index Layers,” Appl. Opt. 24, 457 (1985).
[CrossRef] [PubMed]

P. W. Baumeister, “Antireflection Coatings with Chebyshev or Butterworh Response: Design,” Appl. Opt. 24, 4568 (1985).

1983 (1)

1982 (1)

1981 (2)

1979 (1)

1978 (2)

1977 (1)

1974 (1)

1973 (1)

1968 (1)

O. S. Heavens, H. M. Liddell, “Least Squares Method for the Automatic Design of Multi-layers,” Opt. Acta 15, 129 (1968).

1965 (1)

1958 (1)

1952 (1)

Baumeister, P.

Baumeister, P. W.

P. W. Baumeister, “Antireflection Coatings with Chebyshev or Butterworh Response: Design,” Appl. Opt. 24, 4568 (1985).

C. Ufford, P. W. Baumeister, “Graphical Aids in the Use of Equivalent Index in Multilayer-Filter Design,” J. Opt. Soc. Am. 64, 329 (1974).
[CrossRef]

Bloom, A.

Bukay, H.

Ceren, E.

Dobrowolski, J. A.

Epstein, L. I.

Grey, D. S.

R. J. Pegis, D. S. Grey, T. P. Vogl, A. K. Rigler, “The Generalized Orthonormal Optimization Program and its Applications,” in Recent Advances in Optimization Techniques, A. Lavi, T. P. Vogl, Eds. (Wiley, New York, 1965).

Heavens, O. S.

O. S. Heavens, H. M. Liddell, “Least Squares Method for the Automatic Design of Multi-layers,” Opt. Acta 15, 129 (1968).

Holm, C.

Jones, E.

G. Matthaei, L. Young, E. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures (McGraw-Hill, New York, 1964), p. 39.

Liddell, H. M.

O. S. Heavens, H. M. Liddell, “Least Squares Method for the Automatic Design of Multi-layers,” Opt. Acta 15, 129 (1968).

Lowe, D.

Lubezky, I.

Matthaei, G.

G. Matthaei, L. Young, E. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures (McGraw-Hill, New York, 1964), p. 39.

Mistree, F.

T. E. Shoup, F. Mistree, Optimization Methods with Applications for Personal Computers (Prentice-Hall, Englewood Cliffs, NJ, 1987).

Moore, R.

Ohmer, M. C.

Pegis, R. J.

R. J. Pegis, D. S. Grey, T. P. Vogl, A. K. Rigler, “The Generalized Orthonormal Optimization Program and its Applications,” in Recent Advances in Optimization Techniques, A. Lavi, T. P. Vogl, Eds. (Wiley, New York, 1965).

Pelletier, E.

E. Pelletier, “Calcul et Réalisation de Revétements Multidiélectriques Présentant des Caractéristiques Spectrales Imposées,” Thesis, Faculté des Sciences d’Orsay (1970).

Rigler, A. K.

R. J. Pegis, D. S. Grey, T. P. Vogl, A. K. Rigler, “The Generalized Orthonormal Optimization Program and its Applications,” in Recent Advances in Optimization Techniques, A. Lavi, T. P. Vogl, Eds. (Wiley, New York, 1965).

Shoup, T. E.

T. E. Shoup, F. Mistree, Optimization Methods with Applications for Personal Computers (Prentice-Hall, Englewood Cliffs, NJ, 1987).

Southwell, W.

Tang, J. F.

Taubenfeld, Z.

Ufford, C.

Vogl, T. P.

R. J. Pegis, D. S. Grey, T. P. Vogl, A. K. Rigler, “The Generalized Orthonormal Optimization Program and its Applications,” in Recent Advances in Optimization Techniques, A. Lavi, T. P. Vogl, Eds. (Wiley, New York, 1965).

Walsh, K.

Wild, W. J.

Young, L.

G. Matthaei, L. Young, E. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures (McGraw-Hill, New York, 1964), p. 39.

Zheng, O.

Zipin, H.

Appl. Opt. (10)

J. Opt. Soc. Am. (6)

Opt. Acta (1)

O. S. Heavens, H. M. Liddell, “Least Squares Method for the Automatic Design of Multi-layers,” Opt. Acta 15, 129 (1968).

Opt. Lett. (1)

Other (5)

R. J. Pegis, D. S. Grey, T. P. Vogl, A. K. Rigler, “The Generalized Orthonormal Optimization Program and its Applications,” in Recent Advances in Optimization Techniques, A. Lavi, T. P. Vogl, Eds. (Wiley, New York, 1965).

E. Pelletier, “Calcul et Réalisation de Revétements Multidiélectriques Présentant des Caractéristiques Spectrales Imposées,” Thesis, Faculté des Sciences d’Orsay (1970).

T. E. Shoup, F. Mistree, Optimization Methods with Applications for Personal Computers (Prentice-Hall, Englewood Cliffs, NJ, 1987).

P. Baumeister, Optical Coating Technology Lecture Notes for the Five Day Short Course Engineering 823.17 at the UCLA Extension (1986), paragraph 4.7.2.

G. Matthaei, L. Young, E. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures (McGraw-Hill, New York, 1964), p. 39.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spectral reflectances of a prototype Chebyshev antireflection coating A and its simulated version B, which was used as a standard starting design for further refinement (Table II).

Fig. 2
Fig. 2

Spectral reflectances and refractive-index profiles of antireflection coatings resulting from the refinement of the standard starting design (see Table II).

Fig. 3
Fig. 3

Spectral reflectances and refractive-index profiles of antireflection coatings resulting from the refinement of other starting (see Table III).

Fig. 4
Fig. 4

Spectral reflectances and refractive-index profiles of antireflection coatings resulting from the use of numerical thin film synthesis programs (see Table IV).

Tables (4)

Tables Icon

Table I Participants in the Design of an AR Coating for the IR

Tables Icon

Table II Solutions Resulting from Refinement of the Standard Starting Design

Tables Icon

Table III Solutions Resulting from the Refinement of Different Starting Designs

Tables Icon

Table IV Solutions Obtained by Synthesis Methods

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M = [ i = 1 m W i ( R i - R T , i ) 2 i = 1 m W i ] 1 / 2 .
W q = 3 × 2 ( 7.7 - 12.3 ) ( 7.7 + 12.3 ) = 1.4.
n 1 n 4 = n 0 n s ,
n 2 n 3 = n 0 n s ,

Metrics