Abstract

Detection of CO2 and CO at 1.58 μm (6322 cm−1) using an InGaAsP diode laser and mode control is described. Mode control is a technique whereby a short cavity, external to the laser, is used to force the laser to operate in a single mode. By monitoring the voltage across the terminals of the laser and using electronic feedback it is possible to optimize continually the external cavity so that the laser operates reliably in the mode of choice for scans >3.5 cm−1. This technique offers the possibility of high-sensitivity detection over a region of ~30 cm−1 with continuous coverage in overlapping sections of ~3 cm−1 with conventional (and hence inexpensive) multimode diode lasers.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Gustavsson, H. Martin, “Low-Cost High-Resolution Laser Spectrometer System in the Near Infrared Region Using a GaAlAs Diode Laser,” Rev. Sci. Instrum. 57, 1132 (1986).
    [CrossRef]
  2. H. Sasada, “Stark-Modulation Spectroscopy of NH3 with a 1.23-μm Semiconductor Laser,” Opt. Lett. 9, 448 (1984).
    [CrossRef] [PubMed]
  3. D. T. Cassidy, “Trace Gas Detection Using 1.3-μm InGaAsP Diode Laser Transmitter Modules,” Appl. Opt. 27, 610 (1988).
    [CrossRef] [PubMed]
  4. T. Yanagawa, S. Saito, Y. Yamamoto, “Frequency Stabilization of 1.5 μm InGaAsP Distributed Feedback Laser to NH3 Absorption Lines,” Appl. Phys. Lett. 45, 826 (1984).
    [CrossRef]
  5. K. Kobayashi, I. Mito, “High Light Output-Power Single-Longitudinal-Mode Semiconductor Laser Diodes,” IEEE/OSA J. Lightwave Technol. LT-3, 1202 (1985).
    [CrossRef]
  6. M. Yamaguchi, M. Kitamura, S. Murata, I. Mito, K. Kobayashi, “Wide Range Wavelength Tuning in 1.3 μm DBR- DC-PBH-LDs by Current Injection into the DBR Region,” Electron. Lett. 17, 63 (1985).
    [CrossRef]
  7. S. Raab, K. Hoffman, M. Gabbert, M. V. Glushkov, Y. Kosichkin, “Application of a Diode Laser with an External Resonator in High-Resolution Spectroscopy,” Sov. J. Quantum Electron. 11, 1068 (1981).
    [CrossRef]
  8. A. S. Zibrov et al., “Stabilization of the Emission Frequency of an Injection Laser with an External Resonator,” Sov. J. Quantum Electron. 12, 502 (1982).
    [CrossRef]
  9. G. Wenke, R. Gross, P. Meissner, E. Patzak, “Characteristics of a Compact Three Cavity Laser Configuration,” IEEE/OSA J. Lightwave Technol. LT-5, 608 (1987).
    [CrossRef]
  10. N. A. Olsson, J. P. van der Ziel, “Performance Characteristics of 1.5 μm External Cavity Semiconductor Lasers for Coherent Optical Communications,” IEEE/OSA J. Lightwave Technol. LT-5, 510 (1987).
    [CrossRef]
  11. C. Voumard, R. Salathe, H. Weber, “Resonance Amplifier Model Describing Diode Lasers Coupled to Short External Resonators,” Appl. Phys. 12, 369 (1977).
    [CrossRef]
  12. L. S. Rothman et al., “AFGL Atmospheric Absorption Line Parameters Compilation: 1982 edition,” Appl. Opt. 22, 2247 (1983).
    [CrossRef] [PubMed]
  13. R. Levi, Di Leon, J. Taine, “Infrared Absorption by Gas Mixtures in the 300–850 K Temperature Range I—4.3 μm and 2.7 μm CO2 Spectra,” J. Quant. Spectrosc. Radiat. Transfer 35, 337 (1986).
    [CrossRef]
  14. D. T. Cassidy, “Influence on the Steady-State Oscillation Spectrum of a Diode Laser for Feedback of Light Interacting Coherently and Incoherently with the Field Established in the Laser Cavity,” Appl. Opt. 23, 2070 (1984).
    [CrossRef] [PubMed]
  15. J. Goodwin, “Dynamic Alignment of Small Optical Components,” IEEE/OSA J. Lightwave Technol. LT-5, 97 (1987).
    [CrossRef]
  16. K. Uehara, “Signal Recording and Averaging in Diode-Laser Spectroscopy,” Opt. Lett. 12, 81 (1987).
    [CrossRef] [PubMed]
  17. L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, R. O. Miles, “Spectral Characteristics of Semiconductor Lasers with Optical Feedback,” IEEE J. Quantum Electron. QE-18, 555 (1982).
    [CrossRef]
  18. R. W. Tkach, A. R. Chraplyvy, “Regimes of Feedback in 1.5 μm Distributed Feedback Lasers,” IEEE/OSA J. Lightwave Technol. LT-4, 1655 (1986).
    [CrossRef]

1988

1987

G. Wenke, R. Gross, P. Meissner, E. Patzak, “Characteristics of a Compact Three Cavity Laser Configuration,” IEEE/OSA J. Lightwave Technol. LT-5, 608 (1987).
[CrossRef]

N. A. Olsson, J. P. van der Ziel, “Performance Characteristics of 1.5 μm External Cavity Semiconductor Lasers for Coherent Optical Communications,” IEEE/OSA J. Lightwave Technol. LT-5, 510 (1987).
[CrossRef]

J. Goodwin, “Dynamic Alignment of Small Optical Components,” IEEE/OSA J. Lightwave Technol. LT-5, 97 (1987).
[CrossRef]

K. Uehara, “Signal Recording and Averaging in Diode-Laser Spectroscopy,” Opt. Lett. 12, 81 (1987).
[CrossRef] [PubMed]

1986

R. W. Tkach, A. R. Chraplyvy, “Regimes of Feedback in 1.5 μm Distributed Feedback Lasers,” IEEE/OSA J. Lightwave Technol. LT-4, 1655 (1986).
[CrossRef]

R. Levi, Di Leon, J. Taine, “Infrared Absorption by Gas Mixtures in the 300–850 K Temperature Range I—4.3 μm and 2.7 μm CO2 Spectra,” J. Quant. Spectrosc. Radiat. Transfer 35, 337 (1986).
[CrossRef]

T. Gustavsson, H. Martin, “Low-Cost High-Resolution Laser Spectrometer System in the Near Infrared Region Using a GaAlAs Diode Laser,” Rev. Sci. Instrum. 57, 1132 (1986).
[CrossRef]

1985

K. Kobayashi, I. Mito, “High Light Output-Power Single-Longitudinal-Mode Semiconductor Laser Diodes,” IEEE/OSA J. Lightwave Technol. LT-3, 1202 (1985).
[CrossRef]

M. Yamaguchi, M. Kitamura, S. Murata, I. Mito, K. Kobayashi, “Wide Range Wavelength Tuning in 1.3 μm DBR- DC-PBH-LDs by Current Injection into the DBR Region,” Electron. Lett. 17, 63 (1985).
[CrossRef]

1984

1983

1982

A. S. Zibrov et al., “Stabilization of the Emission Frequency of an Injection Laser with an External Resonator,” Sov. J. Quantum Electron. 12, 502 (1982).
[CrossRef]

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, R. O. Miles, “Spectral Characteristics of Semiconductor Lasers with Optical Feedback,” IEEE J. Quantum Electron. QE-18, 555 (1982).
[CrossRef]

1981

S. Raab, K. Hoffman, M. Gabbert, M. V. Glushkov, Y. Kosichkin, “Application of a Diode Laser with an External Resonator in High-Resolution Spectroscopy,” Sov. J. Quantum Electron. 11, 1068 (1981).
[CrossRef]

1977

C. Voumard, R. Salathe, H. Weber, “Resonance Amplifier Model Describing Diode Lasers Coupled to Short External Resonators,” Appl. Phys. 12, 369 (1977).
[CrossRef]

Cassidy, D. T.

Chraplyvy, A. R.

R. W. Tkach, A. R. Chraplyvy, “Regimes of Feedback in 1.5 μm Distributed Feedback Lasers,” IEEE/OSA J. Lightwave Technol. LT-4, 1655 (1986).
[CrossRef]

Dandridge, A.

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, R. O. Miles, “Spectral Characteristics of Semiconductor Lasers with Optical Feedback,” IEEE J. Quantum Electron. QE-18, 555 (1982).
[CrossRef]

Gabbert, M.

S. Raab, K. Hoffman, M. Gabbert, M. V. Glushkov, Y. Kosichkin, “Application of a Diode Laser with an External Resonator in High-Resolution Spectroscopy,” Sov. J. Quantum Electron. 11, 1068 (1981).
[CrossRef]

Glushkov, M. V.

S. Raab, K. Hoffman, M. Gabbert, M. V. Glushkov, Y. Kosichkin, “Application of a Diode Laser with an External Resonator in High-Resolution Spectroscopy,” Sov. J. Quantum Electron. 11, 1068 (1981).
[CrossRef]

Goldberg, L.

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, R. O. Miles, “Spectral Characteristics of Semiconductor Lasers with Optical Feedback,” IEEE J. Quantum Electron. QE-18, 555 (1982).
[CrossRef]

Goodwin, J.

J. Goodwin, “Dynamic Alignment of Small Optical Components,” IEEE/OSA J. Lightwave Technol. LT-5, 97 (1987).
[CrossRef]

Gross, R.

G. Wenke, R. Gross, P. Meissner, E. Patzak, “Characteristics of a Compact Three Cavity Laser Configuration,” IEEE/OSA J. Lightwave Technol. LT-5, 608 (1987).
[CrossRef]

Gustavsson, T.

T. Gustavsson, H. Martin, “Low-Cost High-Resolution Laser Spectrometer System in the Near Infrared Region Using a GaAlAs Diode Laser,” Rev. Sci. Instrum. 57, 1132 (1986).
[CrossRef]

Hoffman, K.

S. Raab, K. Hoffman, M. Gabbert, M. V. Glushkov, Y. Kosichkin, “Application of a Diode Laser with an External Resonator in High-Resolution Spectroscopy,” Sov. J. Quantum Electron. 11, 1068 (1981).
[CrossRef]

Kitamura, M.

M. Yamaguchi, M. Kitamura, S. Murata, I. Mito, K. Kobayashi, “Wide Range Wavelength Tuning in 1.3 μm DBR- DC-PBH-LDs by Current Injection into the DBR Region,” Electron. Lett. 17, 63 (1985).
[CrossRef]

Kobayashi, K.

M. Yamaguchi, M. Kitamura, S. Murata, I. Mito, K. Kobayashi, “Wide Range Wavelength Tuning in 1.3 μm DBR- DC-PBH-LDs by Current Injection into the DBR Region,” Electron. Lett. 17, 63 (1985).
[CrossRef]

K. Kobayashi, I. Mito, “High Light Output-Power Single-Longitudinal-Mode Semiconductor Laser Diodes,” IEEE/OSA J. Lightwave Technol. LT-3, 1202 (1985).
[CrossRef]

Kosichkin, Y.

S. Raab, K. Hoffman, M. Gabbert, M. V. Glushkov, Y. Kosichkin, “Application of a Diode Laser with an External Resonator in High-Resolution Spectroscopy,” Sov. J. Quantum Electron. 11, 1068 (1981).
[CrossRef]

Leon, Di

R. Levi, Di Leon, J. Taine, “Infrared Absorption by Gas Mixtures in the 300–850 K Temperature Range I—4.3 μm and 2.7 μm CO2 Spectra,” J. Quant. Spectrosc. Radiat. Transfer 35, 337 (1986).
[CrossRef]

Levi, R.

R. Levi, Di Leon, J. Taine, “Infrared Absorption by Gas Mixtures in the 300–850 K Temperature Range I—4.3 μm and 2.7 μm CO2 Spectra,” J. Quant. Spectrosc. Radiat. Transfer 35, 337 (1986).
[CrossRef]

Martin, H.

T. Gustavsson, H. Martin, “Low-Cost High-Resolution Laser Spectrometer System in the Near Infrared Region Using a GaAlAs Diode Laser,” Rev. Sci. Instrum. 57, 1132 (1986).
[CrossRef]

Meissner, P.

G. Wenke, R. Gross, P. Meissner, E. Patzak, “Characteristics of a Compact Three Cavity Laser Configuration,” IEEE/OSA J. Lightwave Technol. LT-5, 608 (1987).
[CrossRef]

Miles, R. O.

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, R. O. Miles, “Spectral Characteristics of Semiconductor Lasers with Optical Feedback,” IEEE J. Quantum Electron. QE-18, 555 (1982).
[CrossRef]

Mito, I.

M. Yamaguchi, M. Kitamura, S. Murata, I. Mito, K. Kobayashi, “Wide Range Wavelength Tuning in 1.3 μm DBR- DC-PBH-LDs by Current Injection into the DBR Region,” Electron. Lett. 17, 63 (1985).
[CrossRef]

K. Kobayashi, I. Mito, “High Light Output-Power Single-Longitudinal-Mode Semiconductor Laser Diodes,” IEEE/OSA J. Lightwave Technol. LT-3, 1202 (1985).
[CrossRef]

Murata, S.

M. Yamaguchi, M. Kitamura, S. Murata, I. Mito, K. Kobayashi, “Wide Range Wavelength Tuning in 1.3 μm DBR- DC-PBH-LDs by Current Injection into the DBR Region,” Electron. Lett. 17, 63 (1985).
[CrossRef]

Olsson, N. A.

N. A. Olsson, J. P. van der Ziel, “Performance Characteristics of 1.5 μm External Cavity Semiconductor Lasers for Coherent Optical Communications,” IEEE/OSA J. Lightwave Technol. LT-5, 510 (1987).
[CrossRef]

Patzak, E.

G. Wenke, R. Gross, P. Meissner, E. Patzak, “Characteristics of a Compact Three Cavity Laser Configuration,” IEEE/OSA J. Lightwave Technol. LT-5, 608 (1987).
[CrossRef]

Raab, S.

S. Raab, K. Hoffman, M. Gabbert, M. V. Glushkov, Y. Kosichkin, “Application of a Diode Laser with an External Resonator in High-Resolution Spectroscopy,” Sov. J. Quantum Electron. 11, 1068 (1981).
[CrossRef]

Rothman, L. S.

Saito, S.

T. Yanagawa, S. Saito, Y. Yamamoto, “Frequency Stabilization of 1.5 μm InGaAsP Distributed Feedback Laser to NH3 Absorption Lines,” Appl. Phys. Lett. 45, 826 (1984).
[CrossRef]

Salathe, R.

C. Voumard, R. Salathe, H. Weber, “Resonance Amplifier Model Describing Diode Lasers Coupled to Short External Resonators,” Appl. Phys. 12, 369 (1977).
[CrossRef]

Sasada, H.

Taine, J.

R. Levi, Di Leon, J. Taine, “Infrared Absorption by Gas Mixtures in the 300–850 K Temperature Range I—4.3 μm and 2.7 μm CO2 Spectra,” J. Quant. Spectrosc. Radiat. Transfer 35, 337 (1986).
[CrossRef]

Taylor, H. F.

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, R. O. Miles, “Spectral Characteristics of Semiconductor Lasers with Optical Feedback,” IEEE J. Quantum Electron. QE-18, 555 (1982).
[CrossRef]

Tkach, R. W.

R. W. Tkach, A. R. Chraplyvy, “Regimes of Feedback in 1.5 μm Distributed Feedback Lasers,” IEEE/OSA J. Lightwave Technol. LT-4, 1655 (1986).
[CrossRef]

Uehara, K.

van der Ziel, J. P.

N. A. Olsson, J. P. van der Ziel, “Performance Characteristics of 1.5 μm External Cavity Semiconductor Lasers for Coherent Optical Communications,” IEEE/OSA J. Lightwave Technol. LT-5, 510 (1987).
[CrossRef]

Voumard, C.

C. Voumard, R. Salathe, H. Weber, “Resonance Amplifier Model Describing Diode Lasers Coupled to Short External Resonators,” Appl. Phys. 12, 369 (1977).
[CrossRef]

Weber, H.

C. Voumard, R. Salathe, H. Weber, “Resonance Amplifier Model Describing Diode Lasers Coupled to Short External Resonators,” Appl. Phys. 12, 369 (1977).
[CrossRef]

Weller, J. F.

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, R. O. Miles, “Spectral Characteristics of Semiconductor Lasers with Optical Feedback,” IEEE J. Quantum Electron. QE-18, 555 (1982).
[CrossRef]

Wenke, G.

G. Wenke, R. Gross, P. Meissner, E. Patzak, “Characteristics of a Compact Three Cavity Laser Configuration,” IEEE/OSA J. Lightwave Technol. LT-5, 608 (1987).
[CrossRef]

Yamaguchi, M.

M. Yamaguchi, M. Kitamura, S. Murata, I. Mito, K. Kobayashi, “Wide Range Wavelength Tuning in 1.3 μm DBR- DC-PBH-LDs by Current Injection into the DBR Region,” Electron. Lett. 17, 63 (1985).
[CrossRef]

Yamamoto, Y.

T. Yanagawa, S. Saito, Y. Yamamoto, “Frequency Stabilization of 1.5 μm InGaAsP Distributed Feedback Laser to NH3 Absorption Lines,” Appl. Phys. Lett. 45, 826 (1984).
[CrossRef]

Yanagawa, T.

T. Yanagawa, S. Saito, Y. Yamamoto, “Frequency Stabilization of 1.5 μm InGaAsP Distributed Feedback Laser to NH3 Absorption Lines,” Appl. Phys. Lett. 45, 826 (1984).
[CrossRef]

Zibrov, A. S.

A. S. Zibrov et al., “Stabilization of the Emission Frequency of an Injection Laser with an External Resonator,” Sov. J. Quantum Electron. 12, 502 (1982).
[CrossRef]

Appl. Opt.

Appl. Phys.

C. Voumard, R. Salathe, H. Weber, “Resonance Amplifier Model Describing Diode Lasers Coupled to Short External Resonators,” Appl. Phys. 12, 369 (1977).
[CrossRef]

Appl. Phys. Lett.

T. Yanagawa, S. Saito, Y. Yamamoto, “Frequency Stabilization of 1.5 μm InGaAsP Distributed Feedback Laser to NH3 Absorption Lines,” Appl. Phys. Lett. 45, 826 (1984).
[CrossRef]

Electron. Lett.

M. Yamaguchi, M. Kitamura, S. Murata, I. Mito, K. Kobayashi, “Wide Range Wavelength Tuning in 1.3 μm DBR- DC-PBH-LDs by Current Injection into the DBR Region,” Electron. Lett. 17, 63 (1985).
[CrossRef]

IEEE J. Quantum Electron.

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, R. O. Miles, “Spectral Characteristics of Semiconductor Lasers with Optical Feedback,” IEEE J. Quantum Electron. QE-18, 555 (1982).
[CrossRef]

IEEE/OSA J. Lightwave Technol.

R. W. Tkach, A. R. Chraplyvy, “Regimes of Feedback in 1.5 μm Distributed Feedback Lasers,” IEEE/OSA J. Lightwave Technol. LT-4, 1655 (1986).
[CrossRef]

J. Goodwin, “Dynamic Alignment of Small Optical Components,” IEEE/OSA J. Lightwave Technol. LT-5, 97 (1987).
[CrossRef]

G. Wenke, R. Gross, P. Meissner, E. Patzak, “Characteristics of a Compact Three Cavity Laser Configuration,” IEEE/OSA J. Lightwave Technol. LT-5, 608 (1987).
[CrossRef]

N. A. Olsson, J. P. van der Ziel, “Performance Characteristics of 1.5 μm External Cavity Semiconductor Lasers for Coherent Optical Communications,” IEEE/OSA J. Lightwave Technol. LT-5, 510 (1987).
[CrossRef]

K. Kobayashi, I. Mito, “High Light Output-Power Single-Longitudinal-Mode Semiconductor Laser Diodes,” IEEE/OSA J. Lightwave Technol. LT-3, 1202 (1985).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

R. Levi, Di Leon, J. Taine, “Infrared Absorption by Gas Mixtures in the 300–850 K Temperature Range I—4.3 μm and 2.7 μm CO2 Spectra,” J. Quant. Spectrosc. Radiat. Transfer 35, 337 (1986).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

T. Gustavsson, H. Martin, “Low-Cost High-Resolution Laser Spectrometer System in the Near Infrared Region Using a GaAlAs Diode Laser,” Rev. Sci. Instrum. 57, 1132 (1986).
[CrossRef]

Sov. J. Quantum Electron.

S. Raab, K. Hoffman, M. Gabbert, M. V. Glushkov, Y. Kosichkin, “Application of a Diode Laser with an External Resonator in High-Resolution Spectroscopy,” Sov. J. Quantum Electron. 11, 1068 (1981).
[CrossRef]

A. S. Zibrov et al., “Stabilization of the Emission Frequency of an Injection Laser with an External Resonator,” Sov. J. Quantum Electron. 12, 502 (1982).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Plots of the output power as a function of optical frequency (a) for no mode control and (b) with mode control. The data shown in the inset of (b) were recorded with a sensitivity increased by 100× and can be used to deduce the degree to which single-mode operation is achieved with mode control. For all traces the widths of the individual modes are instrument broadened.

Fig. 2
Fig. 2

Demonstration of detection of absorption features using a laser with mode control. (a) Transmitted power as a function of optical frequency for propagation through a White cell set for a path length of 4.17 m and containing pure CO2 at a pressure of ~240 Torr. (b), (c) Second harmonic signals obtained for the same path length and conditions as for (a). Note that in (b) and (c) the output power variation of the laser with optical frequency has been normalized out. The sensitivity was increased by a factor of 40 for (c) relative to (b). The predicted positions of CO2 absorptions and strengths (on a logarithmic scale, each division = 10 dB) are plotted along the abscissa of (c).

Fig. 3
Fig. 3

Signals and laser output spectra observed in controlling the modes of the diode laser. The periodic with time signal shown in (a), (b), and (c) is the variation of the voltage across the laser terminals as the optical element which controls the modes is forced to execute harmonic motion about a fixed position P. The peak-to-peak height of the sine wave shown in (a) and (c) is ~30 μV: (a) P set for multimode operation; (b) P set for single-mode operation; (c) P set for multimode operation, but this time modes to the left of the desired mode [see (b)] are operating. Note the phase and magnitude of the fundamental frequency of the laser voltage for each case. These signals can be used to lock the laser to single-mode operation.

Fig. 4
Fig. 4

Schematic diagram of the experimental apparatus and signal processing electronics used for trace gas detection and mode control.

Fig. 5
Fig. 5

Traces which demonstrate the sensitivity of 2f detection using the transmitter module and mode control: (a) background signal after the gas was pumped out of the cell; (b) variation in time of the 2f signal. To acquire this trace the optical frequency was set to 6323.19 cm−1. For the first ~2 min the signal was blocked to demonstrate the detector noise, while for the next ~4 min the modulation was removed to measure the beam noise. For both (a) and (b) the output power variation with optical frequency of the laser normalized out.

Fig. 6
Fig. 6

Effects of optical feedback on the operation of the laser. For both traces the average frequency of the laser was set to line center and modulated sinusoidally about this point. A single sweep over the line was recorded. (a) A large modulation was used to display an isolated absorption line. (b) The modulation was reduced to display on an expanded scale the region of (a) enclosed in the box. Note the discontinuous tuning in the optical frequency of the laser. This is due to optical feedback and creates noise which limits the sensitivity achieved.

Metrics