Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. De Bernardi, A. Loffredo, S. Morasca, “Optimum Conditions for Waveguide Loss Measurements by Scattered Radiation Detection at Visible and Near-IR Wavelengths,” Proc. Soc. Photo-Opt. Instrum. Eng. 651, 259 (1986).
  2. A. C. Boccara, D. Fournier, W. Jackson, N. M. Amer, “Sensitive Photothermal Deflection Technique for Measuring Absorption in Optically Thin Media,” Opt. Lett. 5, 377 (1980).
    [CrossRef] [PubMed]
  3. W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier “Photothermal Deflection Spectroscopy and Detection,” Appl. Opt. 20, 1333 (1981).
    [CrossRef] [PubMed]
  4. N. J. Dovichi, T. G. Nolan, W. A. Weimer, “Theory for Laser Induced Photothermal Refraction,” Anal. Chem. 56, 1700 (1984).
    [CrossRef]
  5. G. C. Wetsel, S. A. Stotts, “Absolute Measurement of Optical Attenuation,” Appl. Phys. Lett. 42, 931 (1983).
    [CrossRef]
  6. S. Dutta, H. E. Jackson, J. T. Boyd, “Extremely Low-Loss Glass Thin-Film Optical Waveguides Utilizing Surface Coating and Laser Annealing,” J. Appl. Phys. 52, 3873 (1981).
    [CrossRef]

1986 (1)

C. De Bernardi, A. Loffredo, S. Morasca, “Optimum Conditions for Waveguide Loss Measurements by Scattered Radiation Detection at Visible and Near-IR Wavelengths,” Proc. Soc. Photo-Opt. Instrum. Eng. 651, 259 (1986).

1984 (1)

N. J. Dovichi, T. G. Nolan, W. A. Weimer, “Theory for Laser Induced Photothermal Refraction,” Anal. Chem. 56, 1700 (1984).
[CrossRef]

1983 (1)

G. C. Wetsel, S. A. Stotts, “Absolute Measurement of Optical Attenuation,” Appl. Phys. Lett. 42, 931 (1983).
[CrossRef]

1981 (2)

S. Dutta, H. E. Jackson, J. T. Boyd, “Extremely Low-Loss Glass Thin-Film Optical Waveguides Utilizing Surface Coating and Laser Annealing,” J. Appl. Phys. 52, 3873 (1981).
[CrossRef]

W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier “Photothermal Deflection Spectroscopy and Detection,” Appl. Opt. 20, 1333 (1981).
[CrossRef] [PubMed]

1980 (1)

Amer, N. M.

Boccara, A. C.

Boyd, J. T.

S. Dutta, H. E. Jackson, J. T. Boyd, “Extremely Low-Loss Glass Thin-Film Optical Waveguides Utilizing Surface Coating and Laser Annealing,” J. Appl. Phys. 52, 3873 (1981).
[CrossRef]

De Bernardi, C.

C. De Bernardi, A. Loffredo, S. Morasca, “Optimum Conditions for Waveguide Loss Measurements by Scattered Radiation Detection at Visible and Near-IR Wavelengths,” Proc. Soc. Photo-Opt. Instrum. Eng. 651, 259 (1986).

Dovichi, N. J.

N. J. Dovichi, T. G. Nolan, W. A. Weimer, “Theory for Laser Induced Photothermal Refraction,” Anal. Chem. 56, 1700 (1984).
[CrossRef]

Dutta, S.

S. Dutta, H. E. Jackson, J. T. Boyd, “Extremely Low-Loss Glass Thin-Film Optical Waveguides Utilizing Surface Coating and Laser Annealing,” J. Appl. Phys. 52, 3873 (1981).
[CrossRef]

Fournier, D.

Jackson, H. E.

S. Dutta, H. E. Jackson, J. T. Boyd, “Extremely Low-Loss Glass Thin-Film Optical Waveguides Utilizing Surface Coating and Laser Annealing,” J. Appl. Phys. 52, 3873 (1981).
[CrossRef]

Jackson, W.

Jackson, W. B.

Loffredo, A.

C. De Bernardi, A. Loffredo, S. Morasca, “Optimum Conditions for Waveguide Loss Measurements by Scattered Radiation Detection at Visible and Near-IR Wavelengths,” Proc. Soc. Photo-Opt. Instrum. Eng. 651, 259 (1986).

Morasca, S.

C. De Bernardi, A. Loffredo, S. Morasca, “Optimum Conditions for Waveguide Loss Measurements by Scattered Radiation Detection at Visible and Near-IR Wavelengths,” Proc. Soc. Photo-Opt. Instrum. Eng. 651, 259 (1986).

Nolan, T. G.

N. J. Dovichi, T. G. Nolan, W. A. Weimer, “Theory for Laser Induced Photothermal Refraction,” Anal. Chem. 56, 1700 (1984).
[CrossRef]

Stotts, S. A.

G. C. Wetsel, S. A. Stotts, “Absolute Measurement of Optical Attenuation,” Appl. Phys. Lett. 42, 931 (1983).
[CrossRef]

Weimer, W. A.

N. J. Dovichi, T. G. Nolan, W. A. Weimer, “Theory for Laser Induced Photothermal Refraction,” Anal. Chem. 56, 1700 (1984).
[CrossRef]

Wetsel, G. C.

G. C. Wetsel, S. A. Stotts, “Absolute Measurement of Optical Attenuation,” Appl. Phys. Lett. 42, 931 (1983).
[CrossRef]

Anal. Chem. (1)

N. J. Dovichi, T. G. Nolan, W. A. Weimer, “Theory for Laser Induced Photothermal Refraction,” Anal. Chem. 56, 1700 (1984).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. C. Wetsel, S. A. Stotts, “Absolute Measurement of Optical Attenuation,” Appl. Phys. Lett. 42, 931 (1983).
[CrossRef]

J. Appl. Phys. (1)

S. Dutta, H. E. Jackson, J. T. Boyd, “Extremely Low-Loss Glass Thin-Film Optical Waveguides Utilizing Surface Coating and Laser Annealing,” J. Appl. Phys. 52, 3873 (1981).
[CrossRef]

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

C. De Bernardi, A. Loffredo, S. Morasca, “Optimum Conditions for Waveguide Loss Measurements by Scattered Radiation Detection at Visible and Near-IR Wavelengths,” Proc. Soc. Photo-Opt. Instrum. Eng. 651, 259 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Crossed-beam configuration for photothermal deflection measurement in a waveguide.

Fig. 2
Fig. 2

PTD signal as a function of probe beam offset from the waveguide center: magnitude (+); phase (○).

Fig. 3
Fig. 3

Logarithm of the peak PTD magnitude as a function of distance along the waveguide. Best-fit line yields a propagation loss of 1.2 ± 0.2 dB/cm.

Fig. 4
Fig. 4

Logarithm of the out-of-plane scattered light signal as a function of distance along the waveguide. Best-fit line yields a propagation loss of 1.0 ± 0.5 dB/cm.

Metrics