Abstract

Speckle–turbulence interaction can be utilized to measure the vector wind in a plane perpendicular to the line of sight from a laser transmitter to a target. A continuous wave source of around 1 W and operating at 10.6 μm, in conjunction with an optical heterodyne receiver, has been used to measure atmospheric winds along horizontal paths. A theoretical basis, the experimental apparatus, processing techniques, and experimental results are presented. The technique has been demonstrated for remote sensing of atmospheric winds along horizontal paths but also has potential for global remote sensing of atmospheric winds and for onboard wind shear detection systems for aircraft. The results show that rms accuracies of the order of 0.5 m/s are possible with averaging times as short as 2 s.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Lee, J. C. Harp, “Weak Scattering in Random Media, with Applications to Remote Probing,” Proc. IEEE 57, 375 (1969).
    [CrossRef]
  2. D. L. Fried, “Remote Probing of the Optical Strength of Atmospheric Turbulence and of Wind Velocity,” Proc. IEEE 57, 415 (1969).
    [CrossRef]
  3. R. S. Lawrence, G. R. Ochs, S. F. Clifford, “The Use of Scintillations to Measure Average Wind Across a Light Beam,” Appl. Opt. 11, 239 (1972).
    [CrossRef] [PubMed]
  4. G. R. Ochs, G. F. Miller, “Pattern Velocity Computers—Two Types Developed for Wind Velocity Measurements by Optical Means,” Rev. Sci. Instrum. 43, 879 (1972).
    [CrossRef]
  5. T. H. Pries, E. T. Young, “Evaluation of a Laser Crosswind System,” U.S. Army Electronics Command Research and Development Technical Report, ECOM-5546 (1974).
  6. Ting-i Wang, S. F. Clifford, G. R. Ochs, “Wind and Refractive–Turbulence Sensing Using Crossed Laser Beams,” Appl. Opt. 13, 2602 (1974).
    [CrossRef] [PubMed]
  7. G. R. Ochs, S. F. Clifford, Ting-i Wang, “Laser Wind Sensing: the Effects of Saturation of Scintillation,” Appl. Opt. 15, 403 (1976).
    [CrossRef] [PubMed]
  8. Ting-i Wang, G. R. Ochs, R. S. Lawrence, “Wind Measurements by the Temporal Cross-Correlation of the Optical Scintillations,” Appl. Opt. 20, 4073 (1981).
    [CrossRef] [PubMed]
  9. R. T. Menzies, “Doppler Lidar Atmospheric Wind Sensors: a Comparative Performance Evaluation for Global Measurement Applications from Earth Orbit,” Appl. Opt. 25, 2546 (1986).
    [CrossRef] [PubMed]
  10. M. H. Lee, J. F. Holmes, J. R. Kerr, “Statistics of Speckle Propagation Through the Turbulent Atmosphere,” J. Opt. Soc. Am. 66, 1164 (1976).
    [CrossRef]
  11. J. F. Holmes, M. H. Lee, J. R. Kerr, “Effect of the Logamplitude Covariance Function on the Statistics of Speckle Propagation Through the Turbulent Atmosphere,” J. Opt. Soc. Am. 70, 355 (1980).
    [CrossRef]
  12. J. F. Holmes, “Optical Remote Wind Measurement Using Speckle-Turbulence Interaction,” in Proceedings, Optical Society of America Conference on Optical and Millimeter Wave Propagation and Scattering, Florence, Italy, 27–30 May 1986.
  13. J. F. Holmes, F. Amzajerdian, J. M. Hunt, “Improved Optical Local Oscillator Isolation Using Multiple Acoustooptic Modulators and Frequency Diversity,” Opt. Lett. 12, 637 (1987).
    [CrossRef] [PubMed]
  14. B. H. Briggs, G. J. Phillips, B. H. Shinn, Proc. Phys. Soc. B 63, 106 (1950).
    [CrossRef]

1987 (1)

1986 (1)

1981 (1)

1980 (1)

1976 (2)

1974 (2)

T. H. Pries, E. T. Young, “Evaluation of a Laser Crosswind System,” U.S. Army Electronics Command Research and Development Technical Report, ECOM-5546 (1974).

Ting-i Wang, S. F. Clifford, G. R. Ochs, “Wind and Refractive–Turbulence Sensing Using Crossed Laser Beams,” Appl. Opt. 13, 2602 (1974).
[CrossRef] [PubMed]

1972 (2)

R. S. Lawrence, G. R. Ochs, S. F. Clifford, “The Use of Scintillations to Measure Average Wind Across a Light Beam,” Appl. Opt. 11, 239 (1972).
[CrossRef] [PubMed]

G. R. Ochs, G. F. Miller, “Pattern Velocity Computers—Two Types Developed for Wind Velocity Measurements by Optical Means,” Rev. Sci. Instrum. 43, 879 (1972).
[CrossRef]

1969 (2)

R. W. Lee, J. C. Harp, “Weak Scattering in Random Media, with Applications to Remote Probing,” Proc. IEEE 57, 375 (1969).
[CrossRef]

D. L. Fried, “Remote Probing of the Optical Strength of Atmospheric Turbulence and of Wind Velocity,” Proc. IEEE 57, 415 (1969).
[CrossRef]

1950 (1)

B. H. Briggs, G. J. Phillips, B. H. Shinn, Proc. Phys. Soc. B 63, 106 (1950).
[CrossRef]

Amzajerdian, F.

Briggs, B. H.

B. H. Briggs, G. J. Phillips, B. H. Shinn, Proc. Phys. Soc. B 63, 106 (1950).
[CrossRef]

Clifford, S. F.

Fried, D. L.

D. L. Fried, “Remote Probing of the Optical Strength of Atmospheric Turbulence and of Wind Velocity,” Proc. IEEE 57, 415 (1969).
[CrossRef]

Harp, J. C.

R. W. Lee, J. C. Harp, “Weak Scattering in Random Media, with Applications to Remote Probing,” Proc. IEEE 57, 375 (1969).
[CrossRef]

Holmes, J. F.

Hunt, J. M.

Kerr, J. R.

Lawrence, R. S.

Lee, M. H.

Lee, R. W.

R. W. Lee, J. C. Harp, “Weak Scattering in Random Media, with Applications to Remote Probing,” Proc. IEEE 57, 375 (1969).
[CrossRef]

Menzies, R. T.

Miller, G. F.

G. R. Ochs, G. F. Miller, “Pattern Velocity Computers—Two Types Developed for Wind Velocity Measurements by Optical Means,” Rev. Sci. Instrum. 43, 879 (1972).
[CrossRef]

Ochs, G. R.

Phillips, G. J.

B. H. Briggs, G. J. Phillips, B. H. Shinn, Proc. Phys. Soc. B 63, 106 (1950).
[CrossRef]

Pries, T. H.

T. H. Pries, E. T. Young, “Evaluation of a Laser Crosswind System,” U.S. Army Electronics Command Research and Development Technical Report, ECOM-5546 (1974).

Shinn, B. H.

B. H. Briggs, G. J. Phillips, B. H. Shinn, Proc. Phys. Soc. B 63, 106 (1950).
[CrossRef]

Wang, Ting-i

Young, E. T.

T. H. Pries, E. T. Young, “Evaluation of a Laser Crosswind System,” U.S. Army Electronics Command Research and Development Technical Report, ECOM-5546 (1974).

Appl. Opt. (5)

J. Opt. Soc. Am. (2)

Opt. Lett. (1)

Proc. IEEE (2)

R. W. Lee, J. C. Harp, “Weak Scattering in Random Media, with Applications to Remote Probing,” Proc. IEEE 57, 375 (1969).
[CrossRef]

D. L. Fried, “Remote Probing of the Optical Strength of Atmospheric Turbulence and of Wind Velocity,” Proc. IEEE 57, 415 (1969).
[CrossRef]

Proc. Phys. Soc. B (1)

B. H. Briggs, G. J. Phillips, B. H. Shinn, Proc. Phys. Soc. B 63, 106 (1950).
[CrossRef]

Rev. Sci. Instrum. (1)

G. R. Ochs, G. F. Miller, “Pattern Velocity Computers—Two Types Developed for Wind Velocity Measurements by Optical Means,” Rev. Sci. Instrum. 43, 879 (1972).
[CrossRef]

U.S. Army Electronics Command Research and Development Technical Report (1)

T. H. Pries, E. T. Young, “Evaluation of a Laser Crosswind System,” U.S. Army Electronics Command Research and Development Technical Report, ECOM-5546 (1974).

Other (1)

J. F. Holmes, “Optical Remote Wind Measurement Using Speckle-Turbulence Interaction,” in Proceedings, Optical Society of America Conference on Optical and Millimeter Wave Propagation and Scattering, Florence, Italy, 27–30 May 1986.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Wind measurement, target at 1.0 km, binary-Z log ratio processed.

Fig. 2
Fig. 2

Processing technique.

Fig. 3
Fig. 3

Transmitter/receiver optical design.

Fig. 4
Fig. 4

Receiver electronics.

Fig. 5
Fig. 5

Wind measurement, target at 500 m, Z log ratio processed.

Fig. 6
Fig. 6

Wind measurement, target at 1000 m, Z log ratio processed.

Fig. 7
Fig. 7

Low turbulence wind measurement, Z log ratio processed.

Fig. 8
Fig. 8

Low turbulence wind measurement, minimum mean square error processed.

Fig. 9
Fig. 9

Low turbulence wind measurement, binary Z log ratio processed.

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

C I ( P , V τ ) = [ I ( P 2 , t 2 ) - I ] [ I ( P 1 , t 1 ) - I ] = I 2 exp [ P 2 2 α 0 2 - 5.82 L k 2 0 1 C n 2 ( w ) × ( 1 - w ) P - V ( w ) τ 5 / 3 d w ] ,
C I ( P , v τ ) = I 2 exp { - P 2 2 α 0 2 - 32 3 ( 1 ρ 0 ) 5 / 3 0 1 [ ( 1 - w ) 2 P 2 - 2 ( 1 - w ) P V τ cos θ + ( V τ ) 2 ] 5 / 6 d w } ,
0 1 [ ( 1 - w ) 2 - 2 ( 1 - w ) x cos θ + x 2 ] - 1 / 6 × [ ( 1 - w ) cos θ - x ] d w = 0 ,
x = V τ p P .
V = P 2 τ p .
x ( w ) = ( 1 - w ) cos θ .
S I = τ C I ( P , V τ ) τ = 0 = C I ( P , 0 ) ( 32 3 ) ( 5 / 3 ) ( 0.546 L k 2 ) P 2 / 3 0 1 d w × C n 2 ( w ) V p ( w ) ( 1 - w ) 2 / 3 ,
S I = C I ( P , 0 ) 32 3 P 2 / 3 ρ 0 5 / 3 V p ,
exp ( P 2 / 2 α 0 2 ) C I ( P , τ B ) = C I ( 0 , τ B ) .
0 1 [ ( 1 - w ) 2 y 2 - 2 ( 1 - w ) y cos θ + 1 ] 5 / 6 d w = 1 ,
y = P V τ B .
y = 3.1056 cos θ
V = P 3.1056 τ B .
y 1 = P 1 V τ B 1 = 3.1056 cos θ 1 ,
y 2 = P 2 V τ B 2 = 3.1056 cos θ 2 = 3.1056 sin θ 1 ,
θ 2 = θ 1 - 90 ° .
y 1 y 2 = P 1 τ B 2 P 2 τ B 1 = cot θ 1 .
V 1 = V · P 1 P 1 = V cos θ 1 = P 1 3.1056 τ B 1 ,
V 2 = V · P 2 P 2 = V sin θ 1 = P 2 3.1056 τ B 2 .
C I ( 0 , V τ w ) = exp ( - 0.4 ) ,
V / ρ 0 = 0.139 τ w .
B = C I ( 0 , τ ) σ I 2 = exp [ - 32 3 ( P ρ 0 ) 5 / 3 X 5 / 3 ] ,
C = C I ( P , 0 ) σ I 2 = exp [ - P 2 2 α 0 2 - 32 3 ( P ρ 0 ) 5 / 3 3 8 ] ,
X = V τ P .
Z = ln B ln C + P 2 / 2 α 0 2 = 8 3 X 5 / 3 ,
V = ( 3 8 ) 3 / 5 Z 3 / 5 P τ .
S 1 S 2 = C I ( P 1 , o ) C I ( P 2 , o ) ( P 1 P 2 ) 2 / 3 cot θ 1
S 1 S 2 = cot θ 1
V 1 = V cos θ 1
V 2 = V sin θ 1 .
V = ( 3 8 ) 3 / 5 P N n = 1 N Z n 3 / 5 τ n ,
MSE = 1 N n = 1 N [ Z n - 8 3 ( V 2 τ n 2 P 2 ) 5 / 6 ] 2 .
MSE V = 0 ,
V MMSE = P ( 3 8 n = 1 N Z n τ n 5 / 3 n = 1 N τ n 10 / 3 ) 3 / 5 .
MMSE = 1 N [ n = 1 N Z n 2 - ( n = 1 N Z n τ n 5 / 3 ) 2 / n = 1 N τ n 10 / 3 ] .
C n 2 1.741 × 10 - 5 λ 2 L P 2 / 3 V p C I ( P ) .
C n 2 3 × 10 - 17 m - 2 / 3 .

Metrics