Abstract

Scattering functions, i.e., the scattered intensity as a function of angle, are modeled for tropospheric aerosol types with respect to the effect of the nonspherical shape of the particles. Scattering functions of nonspherical particles compared with those of equivalent spheres show differences increasing with particle size. Thus, for aerosol types with a relatively low amount of large particles, such as continental and urban aerosols, the effect due to uncertainty about particle shape can be ignored, compared to effects due to uncertain particle size and refractive index. In desert aerosol the nonspherical particles systematically increase side scatter with a maximum around a scattering angle of 120°, while around 160° the difference between scattering functions of spheres and nonspheres is small. With increasing wavelength the influence of nonspherical particles decreases.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Wiscombe, A. Mugnai, “Single Scattering from Nonspherical Chebyshev Particles: a Compendium of Calculations,” NASA Ref. Publ. 1157 (NASA/GSFC, Greenbelt, MD, Jan.1986).
  2. H. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  3. S. C. Hill, A. C. Hill, P. W. Barber, “Light Scattering by Size/Shape Distributions of Soil Particles and Spheroids,” Appl. Opt. 23, 1025 (1984).
    [CrossRef] [PubMed]
  4. R. H. Zerull, “Scattering Measurements of Dielectric and Absorbing Nonspherical Particles,” Beitr. Phys. Atmos. 49, 168 (1976).
  5. P. Koepke, M. Hess, “Nonspherical Particles and Their Influence on the Scattering Function of Tropospheric Aerosols,” J. Aerosol Sci. 17, No. 3, 254 (1986).
    [CrossRef]
  6. R. H. Zerull, R. H. Giese, S. Schwill, K. Weiss, “Scattering by Particles of Nonspherical Shape,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, Ed. (Plenum, New York, 1980), p. 273.
    [CrossRef]
  7. R. H. Zerull, “Angular Scattering Measurements for a Set of Convex and Concave Particles of Different Size,” Universitat Bochum, F.R. Germany; private communication (1986).
  8. P. Koepke, H. Quenzel, “Most Suitable Conditions for Aerosol Monitoring from Space,” Adv. Space Res. 2, No. 5, 29 (1983).
    [CrossRef]
  9. Radiation Commission, IAMAP, “A Preliminary Cloudless Standard Atmosphere for Radiation Computation,” WCP-112, WMO/TD-No. 24 (World Meteorology Organization, Geneva, Mar.1986).
  10. A. Deepak, H. E. Gerber, Eds., “Report of the Experts Meeting on Aerosols and Their Climatic Effects,” WCP-55 (World Meteorology Organization, Geneva, Dec.1983).
  11. E. P. Shettle, “Optical and Radiative Properties of a Desert Aerosol Model,” in IRS’84: Current Problems in Atmospheric Radiation, G. Fiocco, Ed. (Deepak, Hampton, VA, 1984), p. 74.
  12. R. Jaenicke, Table 4.1, p. 18 in Ref. 10 (1983).
  13. L. Schütz, “Long Range Transport of Desert Dust with Special Emphasis on the Sahara,” Ann. N.Y. Acad. Sci. 338, 15 (1980).
    [CrossRef]
  14. D. W. Schuerman, Ed., Light Scattering by Irregularly Shaped Particles, (Plenum, New York, 1980).
    [CrossRef]
  15. W. J. Wiscombe, A. Mugnai, “Scattering from Nonspherical Chebyshev Particles. 2: Means of Angular Scattering Patterns,” Appl. Opt. 27, 2405 (1988).
    [CrossRef] [PubMed]
  16. R. Zerull, R. H. Giese, “Microwave Analogue Studies,” in Planets, Stars and Nebulae, Studied with Photopolarimetry, T. Gehrels, Ed. (U. Arizona Press, Tucson, 1974), p. 901.
  17. R. Zerull, R. H. Giese, K. Weiss-Wrana, “Experimentelle Methoden zur Bestimmung der Streufunktionen unregelmäβiger Staubpartikeln,” Verh. Deutsch. Phys. Ges. (VI) 19, 1516 (1984).
  18. R. J. Cheng, “Physical Properties of Atmospheric Particulates,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, Ed. (Plenum, New York, 1980), p. 69.
    [CrossRef]
  19. L. Schütz, G. A. d’Almeida, “A Collection of Photographs of Aerosol Particles Sampled During Measurement Campaigns in the Sahara,” Mainz Just. Meteorologie, F.R. Germany; private communication (1986).
  20. I. J. Smalley, C. Vita-Finzi, “The Formation of Fine Particles in Sandy Deserts and the Nature of ‘Desert’ Loess,” J. Sediment. Petrol. 38, 766 (1968).
  21. R. J. Perry, A. J. Hunt, D. R. Huffman, “Experimental Determinations of Mueller Scattering Matrices for Nonspherical Particles,” Appl. Opt. 17, 2700 (1978).
    [CrossRef] [PubMed]
  22. G. Haenel, “The Properties of Atmospheric Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air,” Adv. Geophys. 19, 74 (1976).
  23. D. W. Schuerman, R. Wang, B. Gustafson, R. Schaefer, “Systematic Studies of Light Scattering. 1: Particle Shape,” Appl. Opt. 20, 4039 (1981).
    [CrossRef] [PubMed]
  24. J. B. Pollack, J. N. Cuzzi, “Scattering by Nonspherical Particles of Size Comparable to a Wavelength: a New Semiempirical Theory and Its Application to Tropospheric Aerosols,” J. Atmos. Sci. 37, 868 (1980).
    [CrossRef]
  25. J. Allen, “Aerosol Particle Size and Shape Measurements Through Asymmetric Laser Light Scattering,” Ph.D. Thesis, Washington U. (Dec.1977).
  26. P. Koepke, H. Quenzel, “Turbidity of the Atmosphere Determined from Satellites: Calculation of Optimum Viewing Geometry,” J. Geophys. Res. 84, No. C12, 7847 (1979).
    [CrossRef]
  27. J. L. Melice, A. Boughanimi, F. Eaton, G. Wendler, “Turbidity Measurements of Saharan Aerosol and Their Effects on Atmospheric Heating and Planetary Reflectivity,” Arch. Meteorol. Geophys. Bioclimatol. Ser. B 35, 203, (1984).
    [CrossRef]
  28. K. T. Whitby, “The Physical Characteristics of Sulfur Aerosol,” Atmos. Environ. 12, 135 (1978).
    [CrossRef]
  29. L. Lederer, H. Quenzel, E. Thomalla, “The Usefulness of a Bulk Refractive Index for the Calculation of the Scattering Properties of Mixtures of Aerosol Particles at Wavelength 530 nm,” Beitr. Phys. Atmos. 56, 94 (1983).
  30. G. A. d’Almeida, “On the Variability of Desert Aerosol Radiative Characteristics,” J. Geophys. Res. 92, D3, 3017 (1987).
  31. E. P. Shettle, V. Turner, L. W. Abreu, “Aerosol Phase Functions: Models and Measurements,” in IRS’84: Current Problems in Atmospheric Radiation, G. Fiocco, Ed. (Deepak, Hampton, VA, 1984), p. 34.
  32. H. Horvath, “Determination of the Scattering Function of Atmospheric Aerosols with a Telephotometer,” Appl. Opt. 19, 2651 (1980).
    [CrossRef] [PubMed]

1988 (1)

1987 (1)

G. A. d’Almeida, “On the Variability of Desert Aerosol Radiative Characteristics,” J. Geophys. Res. 92, D3, 3017 (1987).

1986 (1)

P. Koepke, M. Hess, “Nonspherical Particles and Their Influence on the Scattering Function of Tropospheric Aerosols,” J. Aerosol Sci. 17, No. 3, 254 (1986).
[CrossRef]

1984 (3)

S. C. Hill, A. C. Hill, P. W. Barber, “Light Scattering by Size/Shape Distributions of Soil Particles and Spheroids,” Appl. Opt. 23, 1025 (1984).
[CrossRef] [PubMed]

R. Zerull, R. H. Giese, K. Weiss-Wrana, “Experimentelle Methoden zur Bestimmung der Streufunktionen unregelmäβiger Staubpartikeln,” Verh. Deutsch. Phys. Ges. (VI) 19, 1516 (1984).

J. L. Melice, A. Boughanimi, F. Eaton, G. Wendler, “Turbidity Measurements of Saharan Aerosol and Their Effects on Atmospheric Heating and Planetary Reflectivity,” Arch. Meteorol. Geophys. Bioclimatol. Ser. B 35, 203, (1984).
[CrossRef]

1983 (2)

L. Lederer, H. Quenzel, E. Thomalla, “The Usefulness of a Bulk Refractive Index for the Calculation of the Scattering Properties of Mixtures of Aerosol Particles at Wavelength 530 nm,” Beitr. Phys. Atmos. 56, 94 (1983).

P. Koepke, H. Quenzel, “Most Suitable Conditions for Aerosol Monitoring from Space,” Adv. Space Res. 2, No. 5, 29 (1983).
[CrossRef]

1981 (1)

1980 (3)

J. B. Pollack, J. N. Cuzzi, “Scattering by Nonspherical Particles of Size Comparable to a Wavelength: a New Semiempirical Theory and Its Application to Tropospheric Aerosols,” J. Atmos. Sci. 37, 868 (1980).
[CrossRef]

H. Horvath, “Determination of the Scattering Function of Atmospheric Aerosols with a Telephotometer,” Appl. Opt. 19, 2651 (1980).
[CrossRef] [PubMed]

L. Schütz, “Long Range Transport of Desert Dust with Special Emphasis on the Sahara,” Ann. N.Y. Acad. Sci. 338, 15 (1980).
[CrossRef]

1979 (1)

P. Koepke, H. Quenzel, “Turbidity of the Atmosphere Determined from Satellites: Calculation of Optimum Viewing Geometry,” J. Geophys. Res. 84, No. C12, 7847 (1979).
[CrossRef]

1978 (2)

1976 (2)

G. Haenel, “The Properties of Atmospheric Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air,” Adv. Geophys. 19, 74 (1976).

R. H. Zerull, “Scattering Measurements of Dielectric and Absorbing Nonspherical Particles,” Beitr. Phys. Atmos. 49, 168 (1976).

1968 (1)

I. J. Smalley, C. Vita-Finzi, “The Formation of Fine Particles in Sandy Deserts and the Nature of ‘Desert’ Loess,” J. Sediment. Petrol. 38, 766 (1968).

Abreu, L. W.

E. P. Shettle, V. Turner, L. W. Abreu, “Aerosol Phase Functions: Models and Measurements,” in IRS’84: Current Problems in Atmospheric Radiation, G. Fiocco, Ed. (Deepak, Hampton, VA, 1984), p. 34.

Allen, J.

J. Allen, “Aerosol Particle Size and Shape Measurements Through Asymmetric Laser Light Scattering,” Ph.D. Thesis, Washington U. (Dec.1977).

Barber, P. W.

Boughanimi, A.

J. L. Melice, A. Boughanimi, F. Eaton, G. Wendler, “Turbidity Measurements of Saharan Aerosol and Their Effects on Atmospheric Heating and Planetary Reflectivity,” Arch. Meteorol. Geophys. Bioclimatol. Ser. B 35, 203, (1984).
[CrossRef]

Cheng, R. J.

R. J. Cheng, “Physical Properties of Atmospheric Particulates,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, Ed. (Plenum, New York, 1980), p. 69.
[CrossRef]

Cuzzi, J. N.

J. B. Pollack, J. N. Cuzzi, “Scattering by Nonspherical Particles of Size Comparable to a Wavelength: a New Semiempirical Theory and Its Application to Tropospheric Aerosols,” J. Atmos. Sci. 37, 868 (1980).
[CrossRef]

d’Almeida, G. A.

G. A. d’Almeida, “On the Variability of Desert Aerosol Radiative Characteristics,” J. Geophys. Res. 92, D3, 3017 (1987).

L. Schütz, G. A. d’Almeida, “A Collection of Photographs of Aerosol Particles Sampled During Measurement Campaigns in the Sahara,” Mainz Just. Meteorologie, F.R. Germany; private communication (1986).

Eaton, F.

J. L. Melice, A. Boughanimi, F. Eaton, G. Wendler, “Turbidity Measurements of Saharan Aerosol and Their Effects on Atmospheric Heating and Planetary Reflectivity,” Arch. Meteorol. Geophys. Bioclimatol. Ser. B 35, 203, (1984).
[CrossRef]

Giese, R. H.

R. Zerull, R. H. Giese, K. Weiss-Wrana, “Experimentelle Methoden zur Bestimmung der Streufunktionen unregelmäβiger Staubpartikeln,” Verh. Deutsch. Phys. Ges. (VI) 19, 1516 (1984).

R. Zerull, R. H. Giese, “Microwave Analogue Studies,” in Planets, Stars and Nebulae, Studied with Photopolarimetry, T. Gehrels, Ed. (U. Arizona Press, Tucson, 1974), p. 901.

R. H. Zerull, R. H. Giese, S. Schwill, K. Weiss, “Scattering by Particles of Nonspherical Shape,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, Ed. (Plenum, New York, 1980), p. 273.
[CrossRef]

Gustafson, B.

Haenel, G.

G. Haenel, “The Properties of Atmospheric Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air,” Adv. Geophys. 19, 74 (1976).

Hess, M.

P. Koepke, M. Hess, “Nonspherical Particles and Their Influence on the Scattering Function of Tropospheric Aerosols,” J. Aerosol Sci. 17, No. 3, 254 (1986).
[CrossRef]

Hill, A. C.

Hill, S. C.

Horvath, H.

Huffman, D. R.

Hunt, A. J.

Jaenicke, R.

R. Jaenicke, Table 4.1, p. 18 in Ref. 10 (1983).

Koepke, P.

P. Koepke, M. Hess, “Nonspherical Particles and Their Influence on the Scattering Function of Tropospheric Aerosols,” J. Aerosol Sci. 17, No. 3, 254 (1986).
[CrossRef]

P. Koepke, H. Quenzel, “Most Suitable Conditions for Aerosol Monitoring from Space,” Adv. Space Res. 2, No. 5, 29 (1983).
[CrossRef]

P. Koepke, H. Quenzel, “Turbidity of the Atmosphere Determined from Satellites: Calculation of Optimum Viewing Geometry,” J. Geophys. Res. 84, No. C12, 7847 (1979).
[CrossRef]

Lederer, L.

L. Lederer, H. Quenzel, E. Thomalla, “The Usefulness of a Bulk Refractive Index for the Calculation of the Scattering Properties of Mixtures of Aerosol Particles at Wavelength 530 nm,” Beitr. Phys. Atmos. 56, 94 (1983).

Melice, J. L.

J. L. Melice, A. Boughanimi, F. Eaton, G. Wendler, “Turbidity Measurements of Saharan Aerosol and Their Effects on Atmospheric Heating and Planetary Reflectivity,” Arch. Meteorol. Geophys. Bioclimatol. Ser. B 35, 203, (1984).
[CrossRef]

Mugnai, A.

W. J. Wiscombe, A. Mugnai, “Scattering from Nonspherical Chebyshev Particles. 2: Means of Angular Scattering Patterns,” Appl. Opt. 27, 2405 (1988).
[CrossRef] [PubMed]

W. J. Wiscombe, A. Mugnai, “Single Scattering from Nonspherical Chebyshev Particles: a Compendium of Calculations,” NASA Ref. Publ. 1157 (NASA/GSFC, Greenbelt, MD, Jan.1986).

Perry, R. J.

Pollack, J. B.

J. B. Pollack, J. N. Cuzzi, “Scattering by Nonspherical Particles of Size Comparable to a Wavelength: a New Semiempirical Theory and Its Application to Tropospheric Aerosols,” J. Atmos. Sci. 37, 868 (1980).
[CrossRef]

Quenzel, H.

L. Lederer, H. Quenzel, E. Thomalla, “The Usefulness of a Bulk Refractive Index for the Calculation of the Scattering Properties of Mixtures of Aerosol Particles at Wavelength 530 nm,” Beitr. Phys. Atmos. 56, 94 (1983).

P. Koepke, H. Quenzel, “Most Suitable Conditions for Aerosol Monitoring from Space,” Adv. Space Res. 2, No. 5, 29 (1983).
[CrossRef]

P. Koepke, H. Quenzel, “Turbidity of the Atmosphere Determined from Satellites: Calculation of Optimum Viewing Geometry,” J. Geophys. Res. 84, No. C12, 7847 (1979).
[CrossRef]

Schaefer, R.

Schuerman, D. W.

Schütz, L.

L. Schütz, “Long Range Transport of Desert Dust with Special Emphasis on the Sahara,” Ann. N.Y. Acad. Sci. 338, 15 (1980).
[CrossRef]

L. Schütz, G. A. d’Almeida, “A Collection of Photographs of Aerosol Particles Sampled During Measurement Campaigns in the Sahara,” Mainz Just. Meteorologie, F.R. Germany; private communication (1986).

Schwill, S.

R. H. Zerull, R. H. Giese, S. Schwill, K. Weiss, “Scattering by Particles of Nonspherical Shape,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, Ed. (Plenum, New York, 1980), p. 273.
[CrossRef]

Shettle, E. P.

E. P. Shettle, “Optical and Radiative Properties of a Desert Aerosol Model,” in IRS’84: Current Problems in Atmospheric Radiation, G. Fiocco, Ed. (Deepak, Hampton, VA, 1984), p. 74.

E. P. Shettle, V. Turner, L. W. Abreu, “Aerosol Phase Functions: Models and Measurements,” in IRS’84: Current Problems in Atmospheric Radiation, G. Fiocco, Ed. (Deepak, Hampton, VA, 1984), p. 34.

Smalley, I. J.

I. J. Smalley, C. Vita-Finzi, “The Formation of Fine Particles in Sandy Deserts and the Nature of ‘Desert’ Loess,” J. Sediment. Petrol. 38, 766 (1968).

Thomalla, E.

L. Lederer, H. Quenzel, E. Thomalla, “The Usefulness of a Bulk Refractive Index for the Calculation of the Scattering Properties of Mixtures of Aerosol Particles at Wavelength 530 nm,” Beitr. Phys. Atmos. 56, 94 (1983).

Turner, V.

E. P. Shettle, V. Turner, L. W. Abreu, “Aerosol Phase Functions: Models and Measurements,” in IRS’84: Current Problems in Atmospheric Radiation, G. Fiocco, Ed. (Deepak, Hampton, VA, 1984), p. 34.

van de Hulst, H.

H. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Vita-Finzi, C.

I. J. Smalley, C. Vita-Finzi, “The Formation of Fine Particles in Sandy Deserts and the Nature of ‘Desert’ Loess,” J. Sediment. Petrol. 38, 766 (1968).

Wang, R.

Weiss, K.

R. H. Zerull, R. H. Giese, S. Schwill, K. Weiss, “Scattering by Particles of Nonspherical Shape,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, Ed. (Plenum, New York, 1980), p. 273.
[CrossRef]

Weiss-Wrana, K.

R. Zerull, R. H. Giese, K. Weiss-Wrana, “Experimentelle Methoden zur Bestimmung der Streufunktionen unregelmäβiger Staubpartikeln,” Verh. Deutsch. Phys. Ges. (VI) 19, 1516 (1984).

Wendler, G.

J. L. Melice, A. Boughanimi, F. Eaton, G. Wendler, “Turbidity Measurements of Saharan Aerosol and Their Effects on Atmospheric Heating and Planetary Reflectivity,” Arch. Meteorol. Geophys. Bioclimatol. Ser. B 35, 203, (1984).
[CrossRef]

Whitby, K. T.

K. T. Whitby, “The Physical Characteristics of Sulfur Aerosol,” Atmos. Environ. 12, 135 (1978).
[CrossRef]

Wiscombe, W. J.

W. J. Wiscombe, A. Mugnai, “Scattering from Nonspherical Chebyshev Particles. 2: Means of Angular Scattering Patterns,” Appl. Opt. 27, 2405 (1988).
[CrossRef] [PubMed]

W. J. Wiscombe, A. Mugnai, “Single Scattering from Nonspherical Chebyshev Particles: a Compendium of Calculations,” NASA Ref. Publ. 1157 (NASA/GSFC, Greenbelt, MD, Jan.1986).

Zerull, R.

R. Zerull, R. H. Giese, K. Weiss-Wrana, “Experimentelle Methoden zur Bestimmung der Streufunktionen unregelmäβiger Staubpartikeln,” Verh. Deutsch. Phys. Ges. (VI) 19, 1516 (1984).

R. Zerull, R. H. Giese, “Microwave Analogue Studies,” in Planets, Stars and Nebulae, Studied with Photopolarimetry, T. Gehrels, Ed. (U. Arizona Press, Tucson, 1974), p. 901.

Zerull, R. H.

R. H. Zerull, “Scattering Measurements of Dielectric and Absorbing Nonspherical Particles,” Beitr. Phys. Atmos. 49, 168 (1976).

R. H. Zerull, “Angular Scattering Measurements for a Set of Convex and Concave Particles of Different Size,” Universitat Bochum, F.R. Germany; private communication (1986).

R. H. Zerull, R. H. Giese, S. Schwill, K. Weiss, “Scattering by Particles of Nonspherical Shape,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, Ed. (Plenum, New York, 1980), p. 273.
[CrossRef]

Adv. Geophys. (1)

G. Haenel, “The Properties of Atmospheric Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air,” Adv. Geophys. 19, 74 (1976).

Adv. Space Res. (1)

P. Koepke, H. Quenzel, “Most Suitable Conditions for Aerosol Monitoring from Space,” Adv. Space Res. 2, No. 5, 29 (1983).
[CrossRef]

Ann. N.Y. Acad. Sci. (1)

L. Schütz, “Long Range Transport of Desert Dust with Special Emphasis on the Sahara,” Ann. N.Y. Acad. Sci. 338, 15 (1980).
[CrossRef]

Appl. Opt. (5)

Arch. Meteorol. Geophys. Bioclimatol. Ser. B (1)

J. L. Melice, A. Boughanimi, F. Eaton, G. Wendler, “Turbidity Measurements of Saharan Aerosol and Their Effects on Atmospheric Heating and Planetary Reflectivity,” Arch. Meteorol. Geophys. Bioclimatol. Ser. B 35, 203, (1984).
[CrossRef]

Atmos. Environ. (1)

K. T. Whitby, “The Physical Characteristics of Sulfur Aerosol,” Atmos. Environ. 12, 135 (1978).
[CrossRef]

Beitr. Phys. Atmos. (2)

L. Lederer, H. Quenzel, E. Thomalla, “The Usefulness of a Bulk Refractive Index for the Calculation of the Scattering Properties of Mixtures of Aerosol Particles at Wavelength 530 nm,” Beitr. Phys. Atmos. 56, 94 (1983).

R. H. Zerull, “Scattering Measurements of Dielectric and Absorbing Nonspherical Particles,” Beitr. Phys. Atmos. 49, 168 (1976).

J. Aerosol Sci. (1)

P. Koepke, M. Hess, “Nonspherical Particles and Their Influence on the Scattering Function of Tropospheric Aerosols,” J. Aerosol Sci. 17, No. 3, 254 (1986).
[CrossRef]

J. Atmos. Sci. (1)

J. B. Pollack, J. N. Cuzzi, “Scattering by Nonspherical Particles of Size Comparable to a Wavelength: a New Semiempirical Theory and Its Application to Tropospheric Aerosols,” J. Atmos. Sci. 37, 868 (1980).
[CrossRef]

J. Geophys. Res. (2)

G. A. d’Almeida, “On the Variability of Desert Aerosol Radiative Characteristics,” J. Geophys. Res. 92, D3, 3017 (1987).

P. Koepke, H. Quenzel, “Turbidity of the Atmosphere Determined from Satellites: Calculation of Optimum Viewing Geometry,” J. Geophys. Res. 84, No. C12, 7847 (1979).
[CrossRef]

J. Sediment. Petrol. (1)

I. J. Smalley, C. Vita-Finzi, “The Formation of Fine Particles in Sandy Deserts and the Nature of ‘Desert’ Loess,” J. Sediment. Petrol. 38, 766 (1968).

Verh. Deutsch. Phys. Ges. (VI) (1)

R. Zerull, R. H. Giese, K. Weiss-Wrana, “Experimentelle Methoden zur Bestimmung der Streufunktionen unregelmäβiger Staubpartikeln,” Verh. Deutsch. Phys. Ges. (VI) 19, 1516 (1984).

Other (14)

R. J. Cheng, “Physical Properties of Atmospheric Particulates,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, Ed. (Plenum, New York, 1980), p. 69.
[CrossRef]

L. Schütz, G. A. d’Almeida, “A Collection of Photographs of Aerosol Particles Sampled During Measurement Campaigns in the Sahara,” Mainz Just. Meteorologie, F.R. Germany; private communication (1986).

R. Zerull, R. H. Giese, “Microwave Analogue Studies,” in Planets, Stars and Nebulae, Studied with Photopolarimetry, T. Gehrels, Ed. (U. Arizona Press, Tucson, 1974), p. 901.

D. W. Schuerman, Ed., Light Scattering by Irregularly Shaped Particles, (Plenum, New York, 1980).
[CrossRef]

W. J. Wiscombe, A. Mugnai, “Single Scattering from Nonspherical Chebyshev Particles: a Compendium of Calculations,” NASA Ref. Publ. 1157 (NASA/GSFC, Greenbelt, MD, Jan.1986).

H. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

R. H. Zerull, R. H. Giese, S. Schwill, K. Weiss, “Scattering by Particles of Nonspherical Shape,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, Ed. (Plenum, New York, 1980), p. 273.
[CrossRef]

R. H. Zerull, “Angular Scattering Measurements for a Set of Convex and Concave Particles of Different Size,” Universitat Bochum, F.R. Germany; private communication (1986).

Radiation Commission, IAMAP, “A Preliminary Cloudless Standard Atmosphere for Radiation Computation,” WCP-112, WMO/TD-No. 24 (World Meteorology Organization, Geneva, Mar.1986).

A. Deepak, H. E. Gerber, Eds., “Report of the Experts Meeting on Aerosols and Their Climatic Effects,” WCP-55 (World Meteorology Organization, Geneva, Dec.1983).

E. P. Shettle, “Optical and Radiative Properties of a Desert Aerosol Model,” in IRS’84: Current Problems in Atmospheric Radiation, G. Fiocco, Ed. (Deepak, Hampton, VA, 1984), p. 74.

R. Jaenicke, Table 4.1, p. 18 in Ref. 10 (1983).

E. P. Shettle, V. Turner, L. W. Abreu, “Aerosol Phase Functions: Models and Measurements,” in IRS’84: Current Problems in Atmospheric Radiation, G. Fiocco, Ed. (Deepak, Hampton, VA, 1984), p. 34.

J. Allen, “Aerosol Particle Size and Shape Measurements Through Asymmetric Laser Light Scattering,” Ph.D. Thesis, Washington U. (Dec.1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Geometry of scattering angle θ mounted by sun, satellite, and scattering volume.

Fig. 2
Fig. 2

Intensity efficiency over the size parameter for five scattering angles. The rugged line is valid for spheres. The horizontal bars show values for volume equivalent edged convex (triangle) and concave (circle) particles measured7 at the size parameters indicated. Refractive index m = 1.5−0.005i.

Fig. 3
Fig. 3

Intensity efficiency over the size parameter for five scattering angles. The rugged line and horizontal bars without interruption are valid for spheres. The horizontal bars show values calculated for volume equivalent Chebyshev particles16 with convex (dashed bars) and concave (dotted bars) shape. Refractive index m = 1.5−0.02i.

Fig. 4
Fig. 4

Scattering function of the dustlike aerosol component normalized to 1 particle/cm3 with spherical particles (solid line) and particles assumed to be edged concave. Wavelength, 0.7 μm; refractive index, 1.5−0.005i. For an explanation, see the text.

Fig. 5
Fig. 5

Percentage difference between nonspherical and spherical scattering functions of tropospheric aerosol types as indicated. λ = 0.7 μm. SRA = Standard Radiation Atmosphere.9

Fig. 6
Fig. 6

Percentage difference between nonspherical and spherical scattering functions for desert aerosol at a different distance from its source and for the 0.5-μm (dotted) and 1.6-μm (solid) wavelengths.

Fig. 7
Fig. 7

Scattering functions for desert aerosol with particles assumed to be spherical for different refractive indices as indicated. The hatched area gives the range of the scattering function modeled with the two assumptions discussed in Sec. V for desert aerosol with concave edged particles with refractive index 1.5−0.005i.

Tables (1)

Tables Icon

Table I Parameters Characterizing the Aerosol Models

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f ( θ , λ ) = 0 d σ ( θ , λ , m , r ) / d ω · d N ( r ) / d r · d r ;
f ( θ , λ ) = 0 F ( θ , m , x ) · π r 2 · d N ( r ) / d r · d r .
f ( θ , λ ) = i F ( θ , x i , m ) · π r i 2 · Δ N ( r i ) / Δ r i · Δ r i .
θ = arccos ( cos 0 · cos s + sin 0 · sin s · cos ( φ s - φ 0 ) ) ;
d N / d r = i N j r · ln σ j · 2 π exp [ - ( log r - log ρ j 2 log σ j ) 2 ] ,

Metrics