Abstract

Mean shortwave values of the single scattering albedo and the asymmetry parameter of dry atmospheric particles have been measured photometrically. From the single scattering albedo the mean shortwave value of the apparent complex refractive index and the apparent volume fraction of soot within the particulate matter are derived. From 275 measurements the mean value of the single scattering albedo is 0.835, the mean value of the apparent complex refractive index is 1.51–0.026i, and the mean value of the apparent volume fraction of soot is 5.8%. For seventy-seven cases of mostly urban particles the mean value of the asymmetry parameter is 0.39. The term apparent stands for appearing (but not necessarily) real or true. Reasons for this attribute are the idealizations necessary to get a value of the refractive index of atmospheric particles. Consequently the use of an apparent refractive index for modeling purposes is restricted as described in the concluding section.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Coakley, R. D. Cess, F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth’s Radiation Budget: a Parameterization for Climate Models,” J. Atmos. Sci. 40, 116 (1983).
    [CrossRef]
  2. P. Chylek, V. Ramaswamy, R. Cheng, R. G. Pinnik, “Optical Properties and Mass Concentration of Carbonaceous Smokes,” Appl. Opt. 20, 2980 (1981).
    [CrossRef] [PubMed]
  3. D. W. Schuerman, R. T. Wang, B. A. S. Gustafson, R. W. Schaefer, “Systematic Studies of Light Scattering. 1: Particle Shape,” Appl. Opt. 20, 4039 (1981).
    [CrossRef] [PubMed]
  4. R. Zerull, “Laboratory Investigations and Optical Properties of Grains,” in Properties and Interactions of Interplanetary Dust (Reidel, Dordrecht, 1985), p. 197.
    [CrossRef]
  5. P. Chylek, V. Srivastava, “Dielectric Constant of a Composite Inhomogeneous Medium,” Phys. Rev. B 27, 5098 (1983).
    [CrossRef]
  6. G. Hänel, “Radiation Budget of the Boundary Layer. Part II: Simultaneous Measurement of Mean Solar Volume Absorption and Extinction Coefficients of Particles,” Contrib. Atmos. Phys. 60, 241 (1987).
  7. G. Hänel, “The Properties of Atmospheric Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air,” Adv. Geophys. 19, 73 (1976).
    [CrossRef]
  8. G. Hänel, M. Lehmann, “Equilibrium Size of Aerosol Particles and Relative Humidity: New Experimental Data from Various Aerosol Types and Their Treatment for Cloud Physics Application,” Contrib. Atmos. Phys. 54, 57 (1981).
  9. G. W. Grams, A. Colletti, “Analysis of Polar Nephelometer Data Obtained at the First International Workshop on Light Absorption by Aerosol Particles,” in Light Absorption by Aerosol Particles, H. E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982), p. 251.
  10. D. Weidert, “Complete Sets of Optical Parameters of Atmospheric Particles Collected on Nuclepore Filters,” Diplomarbeit, U. Frankfurt (1987).
  11. J.-P. Blanchet, “Application of the Chandrasekhar Mean to Aerosol Optical Parameters,” Atmos. Ocean 20, 189 (1982).
    [CrossRef]
  12. G. Hänel, R. Busen, C. Hillenbrand, R. Schloss, “Light Absorption Measurements: New Techniques,” Appl. Opt. 21, 382 (1982); G. Hänel, C. Hillenbrand, “The Calorimetric Measurement of Optical Absorption,” submitted to Applied Optics (1988).
    [CrossRef] [PubMed]
  13. A. D. Clarke, “Effects of Filter Internal Reflection Coefficient on Light Absorption Measurements made Using the Integrating Plate Method,” Appl. Opt. 21, 3021 (1982); “Integrating Sandwich: a New Method of Measurement of the Light Absorption Coefficient for Atmospheric Particles,” Appl. Opt. 21, 3011 (1982).
    [CrossRef] [PubMed]
  14. S. Twomey, “Direct Visual Photometric Technique for Estimating Absorption in Collected Aerosol Samples,” Appl. Opt. 19, 1740 (1980).
    [CrossRef] [PubMed]
  15. A. D. Clarke, K. J. Noone, J. Heintzenberg, S. G. Warren, D. S. Covert, “Aerosol Light Absorption Measurement Techniques: Analysis and Intercomparison,” Atmos. Environ. 21, 1455 (1987).
  16. G. Mie, “Beitrag zur Optik trüber Medien,” Ann. Phys. 25, 377 (1908).
    [CrossRef]
  17. E. P. Shettle, R. W. Fenn, “Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on their Optical Properties,” Report AFGL-TR-79-0214, Air Force Cambridge Lab., Hanscom AFB (1979).
  18. R. J. Countess, S. H. Cadle, P. J. Groblicki, G. T. Wolff, “Chemical Analysis of Size-Segregated Samples of Denver’s Ambient Particulate,” J. Air Pollut. Control Assoc. 31, 247 (1981).
    [CrossRef]
  19. J. D. Lindberg, J. B. Gillespie, “Relationship between Particle Size and Imaginary Refractive Index in Atmospheric Dust,” Appl. Opt. 16, 2628 (1977).
    [CrossRef] [PubMed]
  20. K. Andre, R. Dlugi, G. Schnatz, “Absorption of Visible Radiation by Atmospheric Aerosol Particles, Fog and Cloud Water Residues,” J. Atmos. Sci. 38, 141 (1981).
    [CrossRef]
  21. M. Nakagaki, W. Heller, “Effect of Light Scattering upon the Refractive Index of Dispersed Colloidal Spheres,” J. Appl. Phys. 27, 975 (1956).
    [CrossRef]
  22. W. G. Egan, T. W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic, New York, 1979).
  23. G. Hänel, “The Real Part of the Mean Complex Refractive Index and the Mean Density of Samples of Atmospheric Aerosol Particles,” Tellus 20, 371 (1968).
    [CrossRef]
  24. These are usually volume absorption, scattering and extinction coefficients, or the phase function; see R. Eiden, “The Elliptical Polarization of Light Scattered by a Volume of Atmospheric Air,” Appl. Opt. 5, 569 (1966).
    [CrossRef] [PubMed]
  25. The size of a particle of unknown properties can be measured only within ±20% at best. Thus using even a simultaneous measurement of the size distribution a considerable error might be the result.
  26. Other models47,52 have the same principal deficiency.
  27. A. D. Clarke, A. P. Waggoner, “Results from University of Washington Participation in First International Workshop on Light Absorption by Aerosol Particles,” in Light Absorption by Aerosol Particles, H. E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).
  28. J. B. Gillespie, “Complex Refractive Index of Powdered Materials in the 9 μm to 11 μm Spectral Region Determined by an Attenuated Total Reflectance Technique and Refractive Index Mixture Rules,” Report ASL-TR-0140, U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range (1983).
  29. C. F. Bohren, L. J. Battan, “Radar Backscattering by Inhomogeneous Precipitation Particles,” J. Atmos. Sci. 37, 1821 (1980).
    [CrossRef]
  30. R. W. Bergstrom, “Comments on the Estimation of Aerosol Absorption Coefficients in the Atmosphere,” Contrib. Atmos. Phys. 46, 198 (1973).
  31. C. F. Bohren, “Applicability of Effective-Medium Theories to Problems of Scattering and Absorption by Nonhomogeneous Atmospheric Particles,” J. Atmos. Sci. 43, 468 (1986).
    [CrossRef]
  32. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  33. G. Hänel, R. Dlugi, “Approximation for the Absorption Coefficient of Airborne Atmospheric Aerosol Particles in Terms of Measurable Bulk Properties,” Tellus 29, 75 (1977).
    [CrossRef]
  34. Three measured distributions have been taken.37,53 As a second urban distribution a power law (concentration, ~r−3) was used, and as a third nonurban distribution one was used with a constant concentration at r < 0.1 μm and with a power law as above for a larger r.
  35. R. B. Penndorf, “Scattering and Extinction Coefficients for Small Spherical Aerosols,” J. Atmos. Sci. 19, 193 (1962).
    [CrossRef]
  36. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).
  37. K. Willeke, K. T. Whitby, “Atmospheric Aerosols: Size Distribution Interpretation,” J. Air Pollut. Control Assoc. 25, 529 (1975).
    [CrossRef]
  38. H. E. Gerber, “Absorption of Light by Atmospheric Aerosol Particles: Review of Instrumentation and Measurements,” in Light Absorption by Aerosol Particles, H. E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).
  39. K. Fischer, “Bestimmung der Absorption von sichtbarer Strahlung durch Aerosolpartikeln,” Contrib. Atmos. Phys. 43, 244 (1970); “Mass Absorption Coefficient of Natural Aerosol Particles in the 0.4–2.4μm Wavelength Interval,” Contrib. Atmos. Phys. 46, 89 (1973), “Mass Absorption Indices of Various Types of Natural Aerosol Particles in the Infrared,” Appl. Opt. 14, 2851 (1975).
    [PubMed]
  40. Z. Levin, J. H. Joseph, Y. Mekler, “Properties of Sharav (Khamsin) Dust—Comparison of Optical and Direct Sampling Data,” J. Atmos. Sci. 37, 881 (1980).
    [CrossRef]
  41. J. D. Lindberg, L. S. Laude, “Measurement of the Absorption Coefficient of Atmospheric Dust,” Appl. Opt. 13, 1923 (1974).
    [CrossRef] [PubMed]
  42. E. M. Patterson, B. T. Marshall, “Diffuse Reflectance and Transmission Measurements of Aerosol Absorption,” in Light Absorption by Aerosol Particles, by H. E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).
  43. P. Kubelka, “New Contribution to the Optics of Intensely Light-Scattering Materials,” J. Opt. Soc. Am. 38, 448 (1948).
    [CrossRef] [PubMed]
  44. J. J. Shah, R. L. Johnson, E. K. Heyerdahl, J. J. Huntzicker, “Carbonaceous Aerosol at Urban and Rural Sites in the United States,” J. Air Pollut. Control Assoc. 36, 254 (1986).
    [CrossRef]
  45. G. Hänel, J. Thudium, “Mean Bulk Densities of Samples of Dry Atmospheric Aerosol Particles: A Summary of Measured Data,” Pure Appl. Geophys. 115, 799 (1977).
    [CrossRef]
  46. C. S. Sloane, “Optical Properties of Aerosols of Mixed Composition,” Atmos. Environ. 18, 871 (1984).
    [CrossRef]
  47. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  48. R. J. Countess, G. T. Wolff, S. H. Cadle, “The Denver Winter Aerosol: A Comprehensive Chemical Characterization,” J. Air Pollut. Control. Assoc. 30, 1194 (1980).
    [CrossRef]
  49. J. J. Shah, T. J. Kneip, J. M. Daisey, “Source Apportionment of Carbonaceous Aerosol in New York City by Multiple Linear Regression,” J. Air Pollut. Control Assoc. 35, 541 (1985).
    [CrossRef] [PubMed]
  50. G. T. Wolff, J.-S. Siak, T. L. Chan, P. E. Kersog, “Multivariate Statistical Analyses of Air Quality Data and Bacterial Mutagenicity Data from Ambient Aerosols,” Atmos. Environ. 20, 2231 (1986).
    [CrossRef]
  51. M. A. Ferman, G. T. Wolff, N. A. Kelly, “The Nature and Sources of Haze in the Shenandoah Valley/Blue Ridge Mountains Area,” J. Air Pollut. Control Assoc. 31, 1074 (1981).
    [CrossRef]
  52. S. Asano, G. Yamamoto, “Light Scattering by a Spheroidal Particle,” Appl. Opt. 14, 29 (1975).
    [PubMed]
  53. C. Junge, “Our Knowledge of the Physico-chemistry of Aerosols in the Undisturbed Marine Environment,” J. Geophys. Res. 77, 5183 (1972); “Studies of the Chemistry of Unpolluted Atmospheres,” Report PAU-5644, Stanford Research Institute (1966).
    [CrossRef]

1987 (2)

G. Hänel, “Radiation Budget of the Boundary Layer. Part II: Simultaneous Measurement of Mean Solar Volume Absorption and Extinction Coefficients of Particles,” Contrib. Atmos. Phys. 60, 241 (1987).

A. D. Clarke, K. J. Noone, J. Heintzenberg, S. G. Warren, D. S. Covert, “Aerosol Light Absorption Measurement Techniques: Analysis and Intercomparison,” Atmos. Environ. 21, 1455 (1987).

1986 (3)

C. F. Bohren, “Applicability of Effective-Medium Theories to Problems of Scattering and Absorption by Nonhomogeneous Atmospheric Particles,” J. Atmos. Sci. 43, 468 (1986).
[CrossRef]

J. J. Shah, R. L. Johnson, E. K. Heyerdahl, J. J. Huntzicker, “Carbonaceous Aerosol at Urban and Rural Sites in the United States,” J. Air Pollut. Control Assoc. 36, 254 (1986).
[CrossRef]

G. T. Wolff, J.-S. Siak, T. L. Chan, P. E. Kersog, “Multivariate Statistical Analyses of Air Quality Data and Bacterial Mutagenicity Data from Ambient Aerosols,” Atmos. Environ. 20, 2231 (1986).
[CrossRef]

1985 (1)

J. J. Shah, T. J. Kneip, J. M. Daisey, “Source Apportionment of Carbonaceous Aerosol in New York City by Multiple Linear Regression,” J. Air Pollut. Control Assoc. 35, 541 (1985).
[CrossRef] [PubMed]

1984 (1)

C. S. Sloane, “Optical Properties of Aerosols of Mixed Composition,” Atmos. Environ. 18, 871 (1984).
[CrossRef]

1983 (2)

J. A. Coakley, R. D. Cess, F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth’s Radiation Budget: a Parameterization for Climate Models,” J. Atmos. Sci. 40, 116 (1983).
[CrossRef]

P. Chylek, V. Srivastava, “Dielectric Constant of a Composite Inhomogeneous Medium,” Phys. Rev. B 27, 5098 (1983).
[CrossRef]

1982 (3)

1981 (6)

P. Chylek, V. Ramaswamy, R. Cheng, R. G. Pinnik, “Optical Properties and Mass Concentration of Carbonaceous Smokes,” Appl. Opt. 20, 2980 (1981).
[CrossRef] [PubMed]

D. W. Schuerman, R. T. Wang, B. A. S. Gustafson, R. W. Schaefer, “Systematic Studies of Light Scattering. 1: Particle Shape,” Appl. Opt. 20, 4039 (1981).
[CrossRef] [PubMed]

M. A. Ferman, G. T. Wolff, N. A. Kelly, “The Nature and Sources of Haze in the Shenandoah Valley/Blue Ridge Mountains Area,” J. Air Pollut. Control Assoc. 31, 1074 (1981).
[CrossRef]

G. Hänel, M. Lehmann, “Equilibrium Size of Aerosol Particles and Relative Humidity: New Experimental Data from Various Aerosol Types and Their Treatment for Cloud Physics Application,” Contrib. Atmos. Phys. 54, 57 (1981).

R. J. Countess, S. H. Cadle, P. J. Groblicki, G. T. Wolff, “Chemical Analysis of Size-Segregated Samples of Denver’s Ambient Particulate,” J. Air Pollut. Control Assoc. 31, 247 (1981).
[CrossRef]

K. Andre, R. Dlugi, G. Schnatz, “Absorption of Visible Radiation by Atmospheric Aerosol Particles, Fog and Cloud Water Residues,” J. Atmos. Sci. 38, 141 (1981).
[CrossRef]

1980 (4)

C. F. Bohren, L. J. Battan, “Radar Backscattering by Inhomogeneous Precipitation Particles,” J. Atmos. Sci. 37, 1821 (1980).
[CrossRef]

Z. Levin, J. H. Joseph, Y. Mekler, “Properties of Sharav (Khamsin) Dust—Comparison of Optical and Direct Sampling Data,” J. Atmos. Sci. 37, 881 (1980).
[CrossRef]

R. J. Countess, G. T. Wolff, S. H. Cadle, “The Denver Winter Aerosol: A Comprehensive Chemical Characterization,” J. Air Pollut. Control. Assoc. 30, 1194 (1980).
[CrossRef]

S. Twomey, “Direct Visual Photometric Technique for Estimating Absorption in Collected Aerosol Samples,” Appl. Opt. 19, 1740 (1980).
[CrossRef] [PubMed]

1977 (3)

J. D. Lindberg, J. B. Gillespie, “Relationship between Particle Size and Imaginary Refractive Index in Atmospheric Dust,” Appl. Opt. 16, 2628 (1977).
[CrossRef] [PubMed]

G. Hänel, J. Thudium, “Mean Bulk Densities of Samples of Dry Atmospheric Aerosol Particles: A Summary of Measured Data,” Pure Appl. Geophys. 115, 799 (1977).
[CrossRef]

G. Hänel, R. Dlugi, “Approximation for the Absorption Coefficient of Airborne Atmospheric Aerosol Particles in Terms of Measurable Bulk Properties,” Tellus 29, 75 (1977).
[CrossRef]

1976 (1)

G. Hänel, “The Properties of Atmospheric Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air,” Adv. Geophys. 19, 73 (1976).
[CrossRef]

1975 (2)

K. Willeke, K. T. Whitby, “Atmospheric Aerosols: Size Distribution Interpretation,” J. Air Pollut. Control Assoc. 25, 529 (1975).
[CrossRef]

S. Asano, G. Yamamoto, “Light Scattering by a Spheroidal Particle,” Appl. Opt. 14, 29 (1975).
[PubMed]

1974 (1)

1973 (1)

R. W. Bergstrom, “Comments on the Estimation of Aerosol Absorption Coefficients in the Atmosphere,” Contrib. Atmos. Phys. 46, 198 (1973).

1972 (1)

C. Junge, “Our Knowledge of the Physico-chemistry of Aerosols in the Undisturbed Marine Environment,” J. Geophys. Res. 77, 5183 (1972); “Studies of the Chemistry of Unpolluted Atmospheres,” Report PAU-5644, Stanford Research Institute (1966).
[CrossRef]

1970 (1)

K. Fischer, “Bestimmung der Absorption von sichtbarer Strahlung durch Aerosolpartikeln,” Contrib. Atmos. Phys. 43, 244 (1970); “Mass Absorption Coefficient of Natural Aerosol Particles in the 0.4–2.4μm Wavelength Interval,” Contrib. Atmos. Phys. 46, 89 (1973), “Mass Absorption Indices of Various Types of Natural Aerosol Particles in the Infrared,” Appl. Opt. 14, 2851 (1975).
[PubMed]

1968 (1)

G. Hänel, “The Real Part of the Mean Complex Refractive Index and the Mean Density of Samples of Atmospheric Aerosol Particles,” Tellus 20, 371 (1968).
[CrossRef]

1966 (1)

1962 (1)

R. B. Penndorf, “Scattering and Extinction Coefficients for Small Spherical Aerosols,” J. Atmos. Sci. 19, 193 (1962).
[CrossRef]

1956 (1)

M. Nakagaki, W. Heller, “Effect of Light Scattering upon the Refractive Index of Dispersed Colloidal Spheres,” J. Appl. Phys. 27, 975 (1956).
[CrossRef]

1948 (1)

1908 (1)

G. Mie, “Beitrag zur Optik trüber Medien,” Ann. Phys. 25, 377 (1908).
[CrossRef]

Andre, K.

K. Andre, R. Dlugi, G. Schnatz, “Absorption of Visible Radiation by Atmospheric Aerosol Particles, Fog and Cloud Water Residues,” J. Atmos. Sci. 38, 141 (1981).
[CrossRef]

Asano, S.

Battan, L. J.

C. F. Bohren, L. J. Battan, “Radar Backscattering by Inhomogeneous Precipitation Particles,” J. Atmos. Sci. 37, 1821 (1980).
[CrossRef]

Bergstrom, R. W.

R. W. Bergstrom, “Comments on the Estimation of Aerosol Absorption Coefficients in the Atmosphere,” Contrib. Atmos. Phys. 46, 198 (1973).

Blanchet, J.-P.

J.-P. Blanchet, “Application of the Chandrasekhar Mean to Aerosol Optical Parameters,” Atmos. Ocean 20, 189 (1982).
[CrossRef]

Bohren, C. F.

C. F. Bohren, “Applicability of Effective-Medium Theories to Problems of Scattering and Absorption by Nonhomogeneous Atmospheric Particles,” J. Atmos. Sci. 43, 468 (1986).
[CrossRef]

C. F. Bohren, L. J. Battan, “Radar Backscattering by Inhomogeneous Precipitation Particles,” J. Atmos. Sci. 37, 1821 (1980).
[CrossRef]

Busen, R.

Cadle, S. H.

R. J. Countess, S. H. Cadle, P. J. Groblicki, G. T. Wolff, “Chemical Analysis of Size-Segregated Samples of Denver’s Ambient Particulate,” J. Air Pollut. Control Assoc. 31, 247 (1981).
[CrossRef]

R. J. Countess, G. T. Wolff, S. H. Cadle, “The Denver Winter Aerosol: A Comprehensive Chemical Characterization,” J. Air Pollut. Control. Assoc. 30, 1194 (1980).
[CrossRef]

Cess, R. D.

J. A. Coakley, R. D. Cess, F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth’s Radiation Budget: a Parameterization for Climate Models,” J. Atmos. Sci. 40, 116 (1983).
[CrossRef]

Chan, T. L.

G. T. Wolff, J.-S. Siak, T. L. Chan, P. E. Kersog, “Multivariate Statistical Analyses of Air Quality Data and Bacterial Mutagenicity Data from Ambient Aerosols,” Atmos. Environ. 20, 2231 (1986).
[CrossRef]

Cheng, R.

Chylek, P.

P. Chylek, V. Srivastava, “Dielectric Constant of a Composite Inhomogeneous Medium,” Phys. Rev. B 27, 5098 (1983).
[CrossRef]

P. Chylek, V. Ramaswamy, R. Cheng, R. G. Pinnik, “Optical Properties and Mass Concentration of Carbonaceous Smokes,” Appl. Opt. 20, 2980 (1981).
[CrossRef] [PubMed]

Clarke, A. D.

A. D. Clarke, K. J. Noone, J. Heintzenberg, S. G. Warren, D. S. Covert, “Aerosol Light Absorption Measurement Techniques: Analysis and Intercomparison,” Atmos. Environ. 21, 1455 (1987).

A. D. Clarke, “Effects of Filter Internal Reflection Coefficient on Light Absorption Measurements made Using the Integrating Plate Method,” Appl. Opt. 21, 3021 (1982); “Integrating Sandwich: a New Method of Measurement of the Light Absorption Coefficient for Atmospheric Particles,” Appl. Opt. 21, 3011 (1982).
[CrossRef] [PubMed]

A. D. Clarke, A. P. Waggoner, “Results from University of Washington Participation in First International Workshop on Light Absorption by Aerosol Particles,” in Light Absorption by Aerosol Particles, H. E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).

Coakley, J. A.

J. A. Coakley, R. D. Cess, F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth’s Radiation Budget: a Parameterization for Climate Models,” J. Atmos. Sci. 40, 116 (1983).
[CrossRef]

Colletti, A.

G. W. Grams, A. Colletti, “Analysis of Polar Nephelometer Data Obtained at the First International Workshop on Light Absorption by Aerosol Particles,” in Light Absorption by Aerosol Particles, H. E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982), p. 251.

Countess, R. J.

R. J. Countess, S. H. Cadle, P. J. Groblicki, G. T. Wolff, “Chemical Analysis of Size-Segregated Samples of Denver’s Ambient Particulate,” J. Air Pollut. Control Assoc. 31, 247 (1981).
[CrossRef]

R. J. Countess, G. T. Wolff, S. H. Cadle, “The Denver Winter Aerosol: A Comprehensive Chemical Characterization,” J. Air Pollut. Control. Assoc. 30, 1194 (1980).
[CrossRef]

Covert, D. S.

A. D. Clarke, K. J. Noone, J. Heintzenberg, S. G. Warren, D. S. Covert, “Aerosol Light Absorption Measurement Techniques: Analysis and Intercomparison,” Atmos. Environ. 21, 1455 (1987).

Daisey, J. M.

J. J. Shah, T. J. Kneip, J. M. Daisey, “Source Apportionment of Carbonaceous Aerosol in New York City by Multiple Linear Regression,” J. Air Pollut. Control Assoc. 35, 541 (1985).
[CrossRef] [PubMed]

Deirmendjian, D.

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).

Dlugi, R.

K. Andre, R. Dlugi, G. Schnatz, “Absorption of Visible Radiation by Atmospheric Aerosol Particles, Fog and Cloud Water Residues,” J. Atmos. Sci. 38, 141 (1981).
[CrossRef]

G. Hänel, R. Dlugi, “Approximation for the Absorption Coefficient of Airborne Atmospheric Aerosol Particles in Terms of Measurable Bulk Properties,” Tellus 29, 75 (1977).
[CrossRef]

Egan, W. G.

W. G. Egan, T. W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic, New York, 1979).

Eiden, R.

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on their Optical Properties,” Report AFGL-TR-79-0214, Air Force Cambridge Lab., Hanscom AFB (1979).

Ferman, M. A.

M. A. Ferman, G. T. Wolff, N. A. Kelly, “The Nature and Sources of Haze in the Shenandoah Valley/Blue Ridge Mountains Area,” J. Air Pollut. Control Assoc. 31, 1074 (1981).
[CrossRef]

Fischer, K.

K. Fischer, “Bestimmung der Absorption von sichtbarer Strahlung durch Aerosolpartikeln,” Contrib. Atmos. Phys. 43, 244 (1970); “Mass Absorption Coefficient of Natural Aerosol Particles in the 0.4–2.4μm Wavelength Interval,” Contrib. Atmos. Phys. 46, 89 (1973), “Mass Absorption Indices of Various Types of Natural Aerosol Particles in the Infrared,” Appl. Opt. 14, 2851 (1975).
[PubMed]

Gerber, H. E.

H. E. Gerber, “Absorption of Light by Atmospheric Aerosol Particles: Review of Instrumentation and Measurements,” in Light Absorption by Aerosol Particles, H. E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).

Gillespie, J. B.

J. D. Lindberg, J. B. Gillespie, “Relationship between Particle Size and Imaginary Refractive Index in Atmospheric Dust,” Appl. Opt. 16, 2628 (1977).
[CrossRef] [PubMed]

J. B. Gillespie, “Complex Refractive Index of Powdered Materials in the 9 μm to 11 μm Spectral Region Determined by an Attenuated Total Reflectance Technique and Refractive Index Mixture Rules,” Report ASL-TR-0140, U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range (1983).

Grams, G. W.

G. W. Grams, A. Colletti, “Analysis of Polar Nephelometer Data Obtained at the First International Workshop on Light Absorption by Aerosol Particles,” in Light Absorption by Aerosol Particles, H. E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982), p. 251.

Groblicki, P. J.

R. J. Countess, S. H. Cadle, P. J. Groblicki, G. T. Wolff, “Chemical Analysis of Size-Segregated Samples of Denver’s Ambient Particulate,” J. Air Pollut. Control Assoc. 31, 247 (1981).
[CrossRef]

Gustafson, B. A. S.

Hänel, G.

G. Hänel, “Radiation Budget of the Boundary Layer. Part II: Simultaneous Measurement of Mean Solar Volume Absorption and Extinction Coefficients of Particles,” Contrib. Atmos. Phys. 60, 241 (1987).

G. Hänel, R. Busen, C. Hillenbrand, R. Schloss, “Light Absorption Measurements: New Techniques,” Appl. Opt. 21, 382 (1982); G. Hänel, C. Hillenbrand, “The Calorimetric Measurement of Optical Absorption,” submitted to Applied Optics (1988).
[CrossRef] [PubMed]

G. Hänel, M. Lehmann, “Equilibrium Size of Aerosol Particles and Relative Humidity: New Experimental Data from Various Aerosol Types and Their Treatment for Cloud Physics Application,” Contrib. Atmos. Phys. 54, 57 (1981).

G. Hänel, R. Dlugi, “Approximation for the Absorption Coefficient of Airborne Atmospheric Aerosol Particles in Terms of Measurable Bulk Properties,” Tellus 29, 75 (1977).
[CrossRef]

G. Hänel, J. Thudium, “Mean Bulk Densities of Samples of Dry Atmospheric Aerosol Particles: A Summary of Measured Data,” Pure Appl. Geophys. 115, 799 (1977).
[CrossRef]

G. Hänel, “The Properties of Atmospheric Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air,” Adv. Geophys. 19, 73 (1976).
[CrossRef]

G. Hänel, “The Real Part of the Mean Complex Refractive Index and the Mean Density of Samples of Atmospheric Aerosol Particles,” Tellus 20, 371 (1968).
[CrossRef]

Heintzenberg, J.

A. D. Clarke, K. J. Noone, J. Heintzenberg, S. G. Warren, D. S. Covert, “Aerosol Light Absorption Measurement Techniques: Analysis and Intercomparison,” Atmos. Environ. 21, 1455 (1987).

Heller, W.

M. Nakagaki, W. Heller, “Effect of Light Scattering upon the Refractive Index of Dispersed Colloidal Spheres,” J. Appl. Phys. 27, 975 (1956).
[CrossRef]

Heyerdahl, E. K.

J. J. Shah, R. L. Johnson, E. K. Heyerdahl, J. J. Huntzicker, “Carbonaceous Aerosol at Urban and Rural Sites in the United States,” J. Air Pollut. Control Assoc. 36, 254 (1986).
[CrossRef]

Hilgeman, T. W.

W. G. Egan, T. W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic, New York, 1979).

Hillenbrand, C.

Huntzicker, J. J.

J. J. Shah, R. L. Johnson, E. K. Heyerdahl, J. J. Huntzicker, “Carbonaceous Aerosol at Urban and Rural Sites in the United States,” J. Air Pollut. Control Assoc. 36, 254 (1986).
[CrossRef]

Johnson, R. L.

J. J. Shah, R. L. Johnson, E. K. Heyerdahl, J. J. Huntzicker, “Carbonaceous Aerosol at Urban and Rural Sites in the United States,” J. Air Pollut. Control Assoc. 36, 254 (1986).
[CrossRef]

Joseph, J. H.

Z. Levin, J. H. Joseph, Y. Mekler, “Properties of Sharav (Khamsin) Dust—Comparison of Optical and Direct Sampling Data,” J. Atmos. Sci. 37, 881 (1980).
[CrossRef]

Junge, C.

C. Junge, “Our Knowledge of the Physico-chemistry of Aerosols in the Undisturbed Marine Environment,” J. Geophys. Res. 77, 5183 (1972); “Studies of the Chemistry of Unpolluted Atmospheres,” Report PAU-5644, Stanford Research Institute (1966).
[CrossRef]

Kelly, N. A.

M. A. Ferman, G. T. Wolff, N. A. Kelly, “The Nature and Sources of Haze in the Shenandoah Valley/Blue Ridge Mountains Area,” J. Air Pollut. Control Assoc. 31, 1074 (1981).
[CrossRef]

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

Kersog, P. E.

G. T. Wolff, J.-S. Siak, T. L. Chan, P. E. Kersog, “Multivariate Statistical Analyses of Air Quality Data and Bacterial Mutagenicity Data from Ambient Aerosols,” Atmos. Environ. 20, 2231 (1986).
[CrossRef]

Kneip, T. J.

J. J. Shah, T. J. Kneip, J. M. Daisey, “Source Apportionment of Carbonaceous Aerosol in New York City by Multiple Linear Regression,” J. Air Pollut. Control Assoc. 35, 541 (1985).
[CrossRef] [PubMed]

Kubelka, P.

Laude, L. S.

Lehmann, M.

G. Hänel, M. Lehmann, “Equilibrium Size of Aerosol Particles and Relative Humidity: New Experimental Data from Various Aerosol Types and Their Treatment for Cloud Physics Application,” Contrib. Atmos. Phys. 54, 57 (1981).

Levin, Z.

Z. Levin, J. H. Joseph, Y. Mekler, “Properties of Sharav (Khamsin) Dust—Comparison of Optical and Direct Sampling Data,” J. Atmos. Sci. 37, 881 (1980).
[CrossRef]

Lindberg, J. D.

Marshall, B. T.

E. M. Patterson, B. T. Marshall, “Diffuse Reflectance and Transmission Measurements of Aerosol Absorption,” in Light Absorption by Aerosol Particles, by H. E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).

Mekler, Y.

Z. Levin, J. H. Joseph, Y. Mekler, “Properties of Sharav (Khamsin) Dust—Comparison of Optical and Direct Sampling Data,” J. Atmos. Sci. 37, 881 (1980).
[CrossRef]

Mie, G.

G. Mie, “Beitrag zur Optik trüber Medien,” Ann. Phys. 25, 377 (1908).
[CrossRef]

Nakagaki, M.

M. Nakagaki, W. Heller, “Effect of Light Scattering upon the Refractive Index of Dispersed Colloidal Spheres,” J. Appl. Phys. 27, 975 (1956).
[CrossRef]

Noone, K. J.

A. D. Clarke, K. J. Noone, J. Heintzenberg, S. G. Warren, D. S. Covert, “Aerosol Light Absorption Measurement Techniques: Analysis and Intercomparison,” Atmos. Environ. 21, 1455 (1987).

Patterson, E. M.

E. M. Patterson, B. T. Marshall, “Diffuse Reflectance and Transmission Measurements of Aerosol Absorption,” in Light Absorption by Aerosol Particles, by H. E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).

Penndorf, R. B.

R. B. Penndorf, “Scattering and Extinction Coefficients for Small Spherical Aerosols,” J. Atmos. Sci. 19, 193 (1962).
[CrossRef]

Pinnik, R. G.

Ramaswamy, V.

Schaefer, R. W.

Schloss, R.

Schnatz, G.

K. Andre, R. Dlugi, G. Schnatz, “Absorption of Visible Radiation by Atmospheric Aerosol Particles, Fog and Cloud Water Residues,” J. Atmos. Sci. 38, 141 (1981).
[CrossRef]

Schuerman, D. W.

Shah, J. J.

J. J. Shah, R. L. Johnson, E. K. Heyerdahl, J. J. Huntzicker, “Carbonaceous Aerosol at Urban and Rural Sites in the United States,” J. Air Pollut. Control Assoc. 36, 254 (1986).
[CrossRef]

J. J. Shah, T. J. Kneip, J. M. Daisey, “Source Apportionment of Carbonaceous Aerosol in New York City by Multiple Linear Regression,” J. Air Pollut. Control Assoc. 35, 541 (1985).
[CrossRef] [PubMed]

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on their Optical Properties,” Report AFGL-TR-79-0214, Air Force Cambridge Lab., Hanscom AFB (1979).

Siak, J.-S.

G. T. Wolff, J.-S. Siak, T. L. Chan, P. E. Kersog, “Multivariate Statistical Analyses of Air Quality Data and Bacterial Mutagenicity Data from Ambient Aerosols,” Atmos. Environ. 20, 2231 (1986).
[CrossRef]

Sloane, C. S.

C. S. Sloane, “Optical Properties of Aerosols of Mixed Composition,” Atmos. Environ. 18, 871 (1984).
[CrossRef]

Srivastava, V.

P. Chylek, V. Srivastava, “Dielectric Constant of a Composite Inhomogeneous Medium,” Phys. Rev. B 27, 5098 (1983).
[CrossRef]

Thudium, J.

G. Hänel, J. Thudium, “Mean Bulk Densities of Samples of Dry Atmospheric Aerosol Particles: A Summary of Measured Data,” Pure Appl. Geophys. 115, 799 (1977).
[CrossRef]

Twomey, S.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Waggoner, A. P.

A. D. Clarke, A. P. Waggoner, “Results from University of Washington Participation in First International Workshop on Light Absorption by Aerosol Particles,” in Light Absorption by Aerosol Particles, H. E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).

Wang, R. T.

Warren, S. G.

A. D. Clarke, K. J. Noone, J. Heintzenberg, S. G. Warren, D. S. Covert, “Aerosol Light Absorption Measurement Techniques: Analysis and Intercomparison,” Atmos. Environ. 21, 1455 (1987).

Weidert, D.

D. Weidert, “Complete Sets of Optical Parameters of Atmospheric Particles Collected on Nuclepore Filters,” Diplomarbeit, U. Frankfurt (1987).

Whitby, K. T.

K. Willeke, K. T. Whitby, “Atmospheric Aerosols: Size Distribution Interpretation,” J. Air Pollut. Control Assoc. 25, 529 (1975).
[CrossRef]

Willeke, K.

K. Willeke, K. T. Whitby, “Atmospheric Aerosols: Size Distribution Interpretation,” J. Air Pollut. Control Assoc. 25, 529 (1975).
[CrossRef]

Wolff, G. T.

G. T. Wolff, J.-S. Siak, T. L. Chan, P. E. Kersog, “Multivariate Statistical Analyses of Air Quality Data and Bacterial Mutagenicity Data from Ambient Aerosols,” Atmos. Environ. 20, 2231 (1986).
[CrossRef]

R. J. Countess, S. H. Cadle, P. J. Groblicki, G. T. Wolff, “Chemical Analysis of Size-Segregated Samples of Denver’s Ambient Particulate,” J. Air Pollut. Control Assoc. 31, 247 (1981).
[CrossRef]

M. A. Ferman, G. T. Wolff, N. A. Kelly, “The Nature and Sources of Haze in the Shenandoah Valley/Blue Ridge Mountains Area,” J. Air Pollut. Control Assoc. 31, 1074 (1981).
[CrossRef]

R. J. Countess, G. T. Wolff, S. H. Cadle, “The Denver Winter Aerosol: A Comprehensive Chemical Characterization,” J. Air Pollut. Control. Assoc. 30, 1194 (1980).
[CrossRef]

Yamamoto, G.

Yurevich, F. B.

J. A. Coakley, R. D. Cess, F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth’s Radiation Budget: a Parameterization for Climate Models,” J. Atmos. Sci. 40, 116 (1983).
[CrossRef]

Zerull, R.

R. Zerull, “Laboratory Investigations and Optical Properties of Grains,” in Properties and Interactions of Interplanetary Dust (Reidel, Dordrecht, 1985), p. 197.
[CrossRef]

Adv. Geophys. (1)

G. Hänel, “The Properties of Atmospheric Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air,” Adv. Geophys. 19, 73 (1976).
[CrossRef]

Ann. Phys. (1)

G. Mie, “Beitrag zur Optik trüber Medien,” Ann. Phys. 25, 377 (1908).
[CrossRef]

Appl. Opt. (9)

These are usually volume absorption, scattering and extinction coefficients, or the phase function; see R. Eiden, “The Elliptical Polarization of Light Scattered by a Volume of Atmospheric Air,” Appl. Opt. 5, 569 (1966).
[CrossRef] [PubMed]

S. Asano, G. Yamamoto, “Light Scattering by a Spheroidal Particle,” Appl. Opt. 14, 29 (1975).
[PubMed]

D. W. Schuerman, R. T. Wang, B. A. S. Gustafson, R. W. Schaefer, “Systematic Studies of Light Scattering. 1: Particle Shape,” Appl. Opt. 20, 4039 (1981).
[CrossRef] [PubMed]

A. D. Clarke, “Effects of Filter Internal Reflection Coefficient on Light Absorption Measurements made Using the Integrating Plate Method,” Appl. Opt. 21, 3021 (1982); “Integrating Sandwich: a New Method of Measurement of the Light Absorption Coefficient for Atmospheric Particles,” Appl. Opt. 21, 3011 (1982).
[CrossRef] [PubMed]

J. D. Lindberg, L. S. Laude, “Measurement of the Absorption Coefficient of Atmospheric Dust,” Appl. Opt. 13, 1923 (1974).
[CrossRef] [PubMed]

P. Chylek, V. Ramaswamy, R. Cheng, R. G. Pinnik, “Optical Properties and Mass Concentration of Carbonaceous Smokes,” Appl. Opt. 20, 2980 (1981).
[CrossRef] [PubMed]

G. Hänel, R. Busen, C. Hillenbrand, R. Schloss, “Light Absorption Measurements: New Techniques,” Appl. Opt. 21, 382 (1982); G. Hänel, C. Hillenbrand, “The Calorimetric Measurement of Optical Absorption,” submitted to Applied Optics (1988).
[CrossRef] [PubMed]

J. D. Lindberg, J. B. Gillespie, “Relationship between Particle Size and Imaginary Refractive Index in Atmospheric Dust,” Appl. Opt. 16, 2628 (1977).
[CrossRef] [PubMed]

S. Twomey, “Direct Visual Photometric Technique for Estimating Absorption in Collected Aerosol Samples,” Appl. Opt. 19, 1740 (1980).
[CrossRef] [PubMed]

Atmos. Environ. (3)

G. T. Wolff, J.-S. Siak, T. L. Chan, P. E. Kersog, “Multivariate Statistical Analyses of Air Quality Data and Bacterial Mutagenicity Data from Ambient Aerosols,” Atmos. Environ. 20, 2231 (1986).
[CrossRef]

A. D. Clarke, K. J. Noone, J. Heintzenberg, S. G. Warren, D. S. Covert, “Aerosol Light Absorption Measurement Techniques: Analysis and Intercomparison,” Atmos. Environ. 21, 1455 (1987).

C. S. Sloane, “Optical Properties of Aerosols of Mixed Composition,” Atmos. Environ. 18, 871 (1984).
[CrossRef]

Atmos. Ocean (1)

J.-P. Blanchet, “Application of the Chandrasekhar Mean to Aerosol Optical Parameters,” Atmos. Ocean 20, 189 (1982).
[CrossRef]

Contrib. Atmos. Phys. (4)

G. Hänel, M. Lehmann, “Equilibrium Size of Aerosol Particles and Relative Humidity: New Experimental Data from Various Aerosol Types and Their Treatment for Cloud Physics Application,” Contrib. Atmos. Phys. 54, 57 (1981).

G. Hänel, “Radiation Budget of the Boundary Layer. Part II: Simultaneous Measurement of Mean Solar Volume Absorption and Extinction Coefficients of Particles,” Contrib. Atmos. Phys. 60, 241 (1987).

K. Fischer, “Bestimmung der Absorption von sichtbarer Strahlung durch Aerosolpartikeln,” Contrib. Atmos. Phys. 43, 244 (1970); “Mass Absorption Coefficient of Natural Aerosol Particles in the 0.4–2.4μm Wavelength Interval,” Contrib. Atmos. Phys. 46, 89 (1973), “Mass Absorption Indices of Various Types of Natural Aerosol Particles in the Infrared,” Appl. Opt. 14, 2851 (1975).
[PubMed]

R. W. Bergstrom, “Comments on the Estimation of Aerosol Absorption Coefficients in the Atmosphere,” Contrib. Atmos. Phys. 46, 198 (1973).

J. Air Pollut. Control Assoc. (5)

K. Willeke, K. T. Whitby, “Atmospheric Aerosols: Size Distribution Interpretation,” J. Air Pollut. Control Assoc. 25, 529 (1975).
[CrossRef]

J. J. Shah, R. L. Johnson, E. K. Heyerdahl, J. J. Huntzicker, “Carbonaceous Aerosol at Urban and Rural Sites in the United States,” J. Air Pollut. Control Assoc. 36, 254 (1986).
[CrossRef]

R. J. Countess, S. H. Cadle, P. J. Groblicki, G. T. Wolff, “Chemical Analysis of Size-Segregated Samples of Denver’s Ambient Particulate,” J. Air Pollut. Control Assoc. 31, 247 (1981).
[CrossRef]

M. A. Ferman, G. T. Wolff, N. A. Kelly, “The Nature and Sources of Haze in the Shenandoah Valley/Blue Ridge Mountains Area,” J. Air Pollut. Control Assoc. 31, 1074 (1981).
[CrossRef]

J. J. Shah, T. J. Kneip, J. M. Daisey, “Source Apportionment of Carbonaceous Aerosol in New York City by Multiple Linear Regression,” J. Air Pollut. Control Assoc. 35, 541 (1985).
[CrossRef] [PubMed]

J. Air Pollut. Control. Assoc. (1)

R. J. Countess, G. T. Wolff, S. H. Cadle, “The Denver Winter Aerosol: A Comprehensive Chemical Characterization,” J. Air Pollut. Control. Assoc. 30, 1194 (1980).
[CrossRef]

J. Appl. Phys. (1)

M. Nakagaki, W. Heller, “Effect of Light Scattering upon the Refractive Index of Dispersed Colloidal Spheres,” J. Appl. Phys. 27, 975 (1956).
[CrossRef]

J. Atmos. Sci. (6)

K. Andre, R. Dlugi, G. Schnatz, “Absorption of Visible Radiation by Atmospheric Aerosol Particles, Fog and Cloud Water Residues,” J. Atmos. Sci. 38, 141 (1981).
[CrossRef]

C. F. Bohren, L. J. Battan, “Radar Backscattering by Inhomogeneous Precipitation Particles,” J. Atmos. Sci. 37, 1821 (1980).
[CrossRef]

Z. Levin, J. H. Joseph, Y. Mekler, “Properties of Sharav (Khamsin) Dust—Comparison of Optical and Direct Sampling Data,” J. Atmos. Sci. 37, 881 (1980).
[CrossRef]

R. B. Penndorf, “Scattering and Extinction Coefficients for Small Spherical Aerosols,” J. Atmos. Sci. 19, 193 (1962).
[CrossRef]

C. F. Bohren, “Applicability of Effective-Medium Theories to Problems of Scattering and Absorption by Nonhomogeneous Atmospheric Particles,” J. Atmos. Sci. 43, 468 (1986).
[CrossRef]

J. A. Coakley, R. D. Cess, F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth’s Radiation Budget: a Parameterization for Climate Models,” J. Atmos. Sci. 40, 116 (1983).
[CrossRef]

J. Geophys. Res. (1)

C. Junge, “Our Knowledge of the Physico-chemistry of Aerosols in the Undisturbed Marine Environment,” J. Geophys. Res. 77, 5183 (1972); “Studies of the Chemistry of Unpolluted Atmospheres,” Report PAU-5644, Stanford Research Institute (1966).
[CrossRef]

J. Opt. Soc. Am. (1)

Phys. Rev. B (1)

P. Chylek, V. Srivastava, “Dielectric Constant of a Composite Inhomogeneous Medium,” Phys. Rev. B 27, 5098 (1983).
[CrossRef]

Pure Appl. Geophys. (1)

G. Hänel, J. Thudium, “Mean Bulk Densities of Samples of Dry Atmospheric Aerosol Particles: A Summary of Measured Data,” Pure Appl. Geophys. 115, 799 (1977).
[CrossRef]

Tellus (2)

G. Hänel, R. Dlugi, “Approximation for the Absorption Coefficient of Airborne Atmospheric Aerosol Particles in Terms of Measurable Bulk Properties,” Tellus 29, 75 (1977).
[CrossRef]

G. Hänel, “The Real Part of the Mean Complex Refractive Index and the Mean Density of Samples of Atmospheric Aerosol Particles,” Tellus 20, 371 (1968).
[CrossRef]

Other (15)

E. M. Patterson, B. T. Marshall, “Diffuse Reflectance and Transmission Measurements of Aerosol Absorption,” in Light Absorption by Aerosol Particles, by H. E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).

W. G. Egan, T. W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic, New York, 1979).

Three measured distributions have been taken.37,53 As a second urban distribution a power law (concentration, ~r−3) was used, and as a third nonurban distribution one was used with a constant concentration at r < 0.1 μm and with a power law as above for a larger r.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).

H. E. Gerber, “Absorption of Light by Atmospheric Aerosol Particles: Review of Instrumentation and Measurements,” in Light Absorption by Aerosol Particles, H. E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

R. Zerull, “Laboratory Investigations and Optical Properties of Grains,” in Properties and Interactions of Interplanetary Dust (Reidel, Dordrecht, 1985), p. 197.
[CrossRef]

G. W. Grams, A. Colletti, “Analysis of Polar Nephelometer Data Obtained at the First International Workshop on Light Absorption by Aerosol Particles,” in Light Absorption by Aerosol Particles, H. E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982), p. 251.

D. Weidert, “Complete Sets of Optical Parameters of Atmospheric Particles Collected on Nuclepore Filters,” Diplomarbeit, U. Frankfurt (1987).

The size of a particle of unknown properties can be measured only within ±20% at best. Thus using even a simultaneous measurement of the size distribution a considerable error might be the result.

Other models47,52 have the same principal deficiency.

A. D. Clarke, A. P. Waggoner, “Results from University of Washington Participation in First International Workshop on Light Absorption by Aerosol Particles,” in Light Absorption by Aerosol Particles, H. E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).

J. B. Gillespie, “Complex Refractive Index of Powdered Materials in the 9 μm to 11 μm Spectral Region Determined by an Attenuated Total Reflectance Technique and Refractive Index Mixture Rules,” Report ASL-TR-0140, U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range (1983).

E. P. Shettle, R. W. Fenn, “Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on their Optical Properties,” Report AFGL-TR-79-0214, Air Force Cambridge Lab., Hanscom AFB (1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Mean variation of the ratio 1 − ω of the absorption and the extinction coefficients of dry atmospheric particles with time.

Fig. 2
Fig. 2

Relationship between the asymmetry parameter g and the single scattering albedo ω of dry atmospheric particles. The solid line is g = ω − 0.4.

Fig. 3
Fig. 3

Apparent mean shortwave value of the imaginary part k of refractive index vs absorption to extinction ratio 1 − ω: (a) mean results for urban and nonurban particles; (b) results for the Denver aerosol.

Fig. 4
Fig. 4

Comparison between the efficiency factor of absorption of a homogeneous sphere after the Mie theory and after the approximation as described in the Appendix.

Tables (4)

Tables Icon

Table I Mean Values for the Ratio 1 − ω between the Absorption and the Extinction Coefficients and the Asymmetry Parameter g of the Particles

Tables Icon

Table II Coefficients at of Eq. (4)

Tables Icon

Table III Mean Values of k for all Stations

Tables Icon

Table IV Apparent Volume Fraction of Soot fs within Total Dry Particulate Material from the Present Study and Mass Fraction of Soot within Total Dry Particulate Material in the United States as Determined from Nonoptical Methods

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

1 - ω = σ A σ EX = j = 1 N r j 2 Q A j j = 1 N r j 2 Q EX j ,
( n - i k ) 2 - 1 ( n - i k ) 2 + 2 = j ( n j - i k j ) 2 - 1 ( n j - i k j ) 2 + 2 f j ,
n 2 - 1 n 2 + 2 + k 2 5 = ( n 0 2 - 1 n 0 2 + 2 + k 0 2 5 ) ( 1 - f s ) + ( n s 2 - 1 n s 2 + 2 + k s 2 5 ) f s k n 2 + 2 = k 0 n 0 2 + 2 ( 1 - f s ) + k s n s 2 + 2 f s .
n = { [ 1.5756 + k ( 1.8599 - 0.4 k ) ] / ( 0.7122 + 0.2 k ) } 1 / 2 .
ln k = a 0 + i = 1 5 a i ln i ( 1 - ω ) .
f s = k ( 0.7122 + 0.2 k 2 ) / ( 0.2627 + 0.1629 k ) - A .
F = { ( α A / α A 1 ) s / 100 for α A α A 2 , F 1 ln α A 3 - F 2 ln α A 2 + ( F 2 - F 1 ) ln α A ln ( α A 3 / α A 2 ) for α A 2 < α A < α A 3 , - 1 + 1 - F 3 α A + α A 3 α A 2 [ F 3 - 1 + α A 3 ( 1 + F 2 ) ] for α A 3 α A , S = 1.43 n - 0.79 , α A 1 = 0.15 k , α A 2 = 3 k / ( 3 k + n - 1 ) , α A 3 = 1 for k < 0.03 and = 4.4 n - 1.8 for 0.03 < k < 1 , F 1 = [ 20 / ( 3 k + n - 1 ) ] s / 100 F 2 = { - 0.22 + 7 k for k < 0.03 , - 1 + n 1.8 ( 0.38 + 0.046 ln k ) for 0.03 < k < 1 , F 3 = ( 0.45 + 0.12 k ) [ ( n 2 + k 2 - 1 ) 2 + 4 k 2 ] 1 / 2 ( n + 1 ) 2 + k 2 .

Metrics