Abstract

Single layer antireflection coatings have been designed and fabricated for frontside illuminated InP/In0.53Ga0.47As/InP photodetectors with normal incident light over the 1200–1600-nm wavelength range. The design treats the InP and InGaAs layers as the bottom two layers of a triple layer antireflection coating. A coating fabricated using plasma enhanced chemical vapor deposited silicon nitride demonstrated <0.5% reflected power at both 1312- and 1559-nm wavelengths simultaneously. The design method used, four antireflection coating designs, and measurement results from fabricated samples using two of the designs are presented.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Wang, K. W. Carey, B. H. Kolner, “Front-side-Illuminated InP/InGaAs/InP p-i-n Photodiode with a −3 dB Bandwidth in Excess of 18 GHz,” IEEE Trans. Electron Devices ED-34, 938 (1987).
    [CrossRef]
  2. S. Miura, H. Kuwatsuka, T. Mikawa, O. Wada, “Planar, Embedded InP/GalnAs p-i-n Photodiode with very High-Speed Response Characteristics, Appl. Phys. Lett. 49, 1522 (1986).
    [CrossRef]
  3. P. Poulain, M. Razeghi, K. Kazmierski, R. Blondeau, P. Philippe, “InGaAs Photodiodes Prepared by Low-Pressure MOCVD,” Electron. Lett. 21, 441 (1985).
    [CrossRef]
  4. V. Diadiuk, S. H. Groves, “Double-Heterostructure InGaAs/InP PIN Photodetectors,” Solid-State Electron. 29, 229 (1986).
    [CrossRef]
  5. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, FL, 1985).
  6. H. Burkhard, H. W. Dinges, E. Kuphal, “Optical Properties of In1-xGaxP1-yAsy, InP, GaAs, and GaP Determined by Ellipsometry,” J. Appl. Phys. 53, 655 (1982).
    [CrossRef]
  7. G. D. Pettit, W. J. Turner, “Refractive Index of InP,” J. Appl. Phys. 36, 2081 (1965).
    [CrossRef]
  8. D. A. Humphreys, R. J. King, D. Jenkins, A. J. Moseley, “Measurement of Absorption Coefficients of Ga.47In.53As over the Wavelength Range 1.0–1.7μm,” Electron. Lett. 21, 1187 (1985).
    [CrossRef]
  9. K. W. Carey, S. Y. Wang, R. Hull, J. E. Turner, D. Oertel, R. Bauer, D. Bimberg, “Characterization of InP/InGaAs/InP Heterostructures Grown by Organometallic Vapor Phase Epitaxy for High-Speed p-i-n Photodiodes,” J. Cryst. Growth 77, 558 (1986).
    [CrossRef]
  10. R. C. Weast, M. J. Astle, W. H. Beyer, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1984–1985).
  11. P. Baumeister, “Optical Interference Coating Technology,” lecture notes for the five-day short course Engineering 823.17 at the UCLA Extension (1985).
  12. R. E. Collin, Foundations for Microwave Engineering (McGraw-Hill, New York, 1966).
  13. P. W. Baumeister, “Antireflection Coatings with Chebyshev or Butterworth Response: Design,” Appl. Opt. 25, 4568 (1986).
    [CrossRef] [PubMed]
  14. R. E. Collin, “Theory and Design of Wide-Band Multisection Quarter-Wave Transformers,” Proc. IRE 43, 179 (1955).
    [CrossRef]
  15. A. Thetford, “A Method of Designing Three-Layer Anti-reflection Coatings,” Opt. Acta 16, 37 (1969).
    [CrossRef]
  16. L. Young, “Synthesis of Multiple Antireflection Films over a Prescribed Frequency Band,” J. Opt. Soc. Am. 51, 967 (1961).
    [CrossRef]
  17. J. E. Bowers, C. A. Burrus, F. Mitschke, “Millimetre-Waveguide-Mounted InGaAs Photodetectors,” Electron. Lett. 22, 633 (1986).
    [CrossRef]
  18. J. E. Bowers, C. A. Burrus, R. J. McCoy, “InGaAs PIN Photodetectors with Modulation Response to Millimetre Wavelengths,” Electron. Lett. 21, 812 (1985).
    [CrossRef]
  19. D. N. Payne, W. A. Gambling, “Zero Material Dispersion in Optical Fibres,” Electron. Lett. 11, 176 (1975).
    [CrossRef]
  20. T. Miya, Y. Terunuma, T. Hosaka, T. Miyashita, “Ultimate Low-Loss Single-Mode Fibre at 1.55 μm,” Electron. Lett. 15, 106 (1979).
    [CrossRef]

1987 (1)

S. Y. Wang, K. W. Carey, B. H. Kolner, “Front-side-Illuminated InP/InGaAs/InP p-i-n Photodiode with a −3 dB Bandwidth in Excess of 18 GHz,” IEEE Trans. Electron Devices ED-34, 938 (1987).
[CrossRef]

1986 (5)

S. Miura, H. Kuwatsuka, T. Mikawa, O. Wada, “Planar, Embedded InP/GalnAs p-i-n Photodiode with very High-Speed Response Characteristics, Appl. Phys. Lett. 49, 1522 (1986).
[CrossRef]

V. Diadiuk, S. H. Groves, “Double-Heterostructure InGaAs/InP PIN Photodetectors,” Solid-State Electron. 29, 229 (1986).
[CrossRef]

K. W. Carey, S. Y. Wang, R. Hull, J. E. Turner, D. Oertel, R. Bauer, D. Bimberg, “Characterization of InP/InGaAs/InP Heterostructures Grown by Organometallic Vapor Phase Epitaxy for High-Speed p-i-n Photodiodes,” J. Cryst. Growth 77, 558 (1986).
[CrossRef]

P. W. Baumeister, “Antireflection Coatings with Chebyshev or Butterworth Response: Design,” Appl. Opt. 25, 4568 (1986).
[CrossRef] [PubMed]

J. E. Bowers, C. A. Burrus, F. Mitschke, “Millimetre-Waveguide-Mounted InGaAs Photodetectors,” Electron. Lett. 22, 633 (1986).
[CrossRef]

1985 (3)

J. E. Bowers, C. A. Burrus, R. J. McCoy, “InGaAs PIN Photodetectors with Modulation Response to Millimetre Wavelengths,” Electron. Lett. 21, 812 (1985).
[CrossRef]

D. A. Humphreys, R. J. King, D. Jenkins, A. J. Moseley, “Measurement of Absorption Coefficients of Ga.47In.53As over the Wavelength Range 1.0–1.7μm,” Electron. Lett. 21, 1187 (1985).
[CrossRef]

P. Poulain, M. Razeghi, K. Kazmierski, R. Blondeau, P. Philippe, “InGaAs Photodiodes Prepared by Low-Pressure MOCVD,” Electron. Lett. 21, 441 (1985).
[CrossRef]

1982 (1)

H. Burkhard, H. W. Dinges, E. Kuphal, “Optical Properties of In1-xGaxP1-yAsy, InP, GaAs, and GaP Determined by Ellipsometry,” J. Appl. Phys. 53, 655 (1982).
[CrossRef]

1979 (1)

T. Miya, Y. Terunuma, T. Hosaka, T. Miyashita, “Ultimate Low-Loss Single-Mode Fibre at 1.55 μm,” Electron. Lett. 15, 106 (1979).
[CrossRef]

1975 (1)

D. N. Payne, W. A. Gambling, “Zero Material Dispersion in Optical Fibres,” Electron. Lett. 11, 176 (1975).
[CrossRef]

1969 (1)

A. Thetford, “A Method of Designing Three-Layer Anti-reflection Coatings,” Opt. Acta 16, 37 (1969).
[CrossRef]

1965 (1)

G. D. Pettit, W. J. Turner, “Refractive Index of InP,” J. Appl. Phys. 36, 2081 (1965).
[CrossRef]

1961 (1)

1955 (1)

R. E. Collin, “Theory and Design of Wide-Band Multisection Quarter-Wave Transformers,” Proc. IRE 43, 179 (1955).
[CrossRef]

Astle, M. J.

R. C. Weast, M. J. Astle, W. H. Beyer, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1984–1985).

Bauer, R.

K. W. Carey, S. Y. Wang, R. Hull, J. E. Turner, D. Oertel, R. Bauer, D. Bimberg, “Characterization of InP/InGaAs/InP Heterostructures Grown by Organometallic Vapor Phase Epitaxy for High-Speed p-i-n Photodiodes,” J. Cryst. Growth 77, 558 (1986).
[CrossRef]

Baumeister, P.

P. Baumeister, “Optical Interference Coating Technology,” lecture notes for the five-day short course Engineering 823.17 at the UCLA Extension (1985).

Baumeister, P. W.

Beyer, W. H.

R. C. Weast, M. J. Astle, W. H. Beyer, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1984–1985).

Bimberg, D.

K. W. Carey, S. Y. Wang, R. Hull, J. E. Turner, D. Oertel, R. Bauer, D. Bimberg, “Characterization of InP/InGaAs/InP Heterostructures Grown by Organometallic Vapor Phase Epitaxy for High-Speed p-i-n Photodiodes,” J. Cryst. Growth 77, 558 (1986).
[CrossRef]

Blondeau, R.

P. Poulain, M. Razeghi, K. Kazmierski, R. Blondeau, P. Philippe, “InGaAs Photodiodes Prepared by Low-Pressure MOCVD,” Electron. Lett. 21, 441 (1985).
[CrossRef]

Bowers, J. E.

J. E. Bowers, C. A. Burrus, F. Mitschke, “Millimetre-Waveguide-Mounted InGaAs Photodetectors,” Electron. Lett. 22, 633 (1986).
[CrossRef]

J. E. Bowers, C. A. Burrus, R. J. McCoy, “InGaAs PIN Photodetectors with Modulation Response to Millimetre Wavelengths,” Electron. Lett. 21, 812 (1985).
[CrossRef]

Burkhard, H.

H. Burkhard, H. W. Dinges, E. Kuphal, “Optical Properties of In1-xGaxP1-yAsy, InP, GaAs, and GaP Determined by Ellipsometry,” J. Appl. Phys. 53, 655 (1982).
[CrossRef]

Burrus, C. A.

J. E. Bowers, C. A. Burrus, F. Mitschke, “Millimetre-Waveguide-Mounted InGaAs Photodetectors,” Electron. Lett. 22, 633 (1986).
[CrossRef]

J. E. Bowers, C. A. Burrus, R. J. McCoy, “InGaAs PIN Photodetectors with Modulation Response to Millimetre Wavelengths,” Electron. Lett. 21, 812 (1985).
[CrossRef]

Carey, K. W.

S. Y. Wang, K. W. Carey, B. H. Kolner, “Front-side-Illuminated InP/InGaAs/InP p-i-n Photodiode with a −3 dB Bandwidth in Excess of 18 GHz,” IEEE Trans. Electron Devices ED-34, 938 (1987).
[CrossRef]

K. W. Carey, S. Y. Wang, R. Hull, J. E. Turner, D. Oertel, R. Bauer, D. Bimberg, “Characterization of InP/InGaAs/InP Heterostructures Grown by Organometallic Vapor Phase Epitaxy for High-Speed p-i-n Photodiodes,” J. Cryst. Growth 77, 558 (1986).
[CrossRef]

Collin, R. E.

R. E. Collin, “Theory and Design of Wide-Band Multisection Quarter-Wave Transformers,” Proc. IRE 43, 179 (1955).
[CrossRef]

R. E. Collin, Foundations for Microwave Engineering (McGraw-Hill, New York, 1966).

Diadiuk, V.

V. Diadiuk, S. H. Groves, “Double-Heterostructure InGaAs/InP PIN Photodetectors,” Solid-State Electron. 29, 229 (1986).
[CrossRef]

Dinges, H. W.

H. Burkhard, H. W. Dinges, E. Kuphal, “Optical Properties of In1-xGaxP1-yAsy, InP, GaAs, and GaP Determined by Ellipsometry,” J. Appl. Phys. 53, 655 (1982).
[CrossRef]

Gambling, W. A.

D. N. Payne, W. A. Gambling, “Zero Material Dispersion in Optical Fibres,” Electron. Lett. 11, 176 (1975).
[CrossRef]

Groves, S. H.

V. Diadiuk, S. H. Groves, “Double-Heterostructure InGaAs/InP PIN Photodetectors,” Solid-State Electron. 29, 229 (1986).
[CrossRef]

Hosaka, T.

T. Miya, Y. Terunuma, T. Hosaka, T. Miyashita, “Ultimate Low-Loss Single-Mode Fibre at 1.55 μm,” Electron. Lett. 15, 106 (1979).
[CrossRef]

Hull, R.

K. W. Carey, S. Y. Wang, R. Hull, J. E. Turner, D. Oertel, R. Bauer, D. Bimberg, “Characterization of InP/InGaAs/InP Heterostructures Grown by Organometallic Vapor Phase Epitaxy for High-Speed p-i-n Photodiodes,” J. Cryst. Growth 77, 558 (1986).
[CrossRef]

Humphreys, D. A.

D. A. Humphreys, R. J. King, D. Jenkins, A. J. Moseley, “Measurement of Absorption Coefficients of Ga.47In.53As over the Wavelength Range 1.0–1.7μm,” Electron. Lett. 21, 1187 (1985).
[CrossRef]

Jenkins, D.

D. A. Humphreys, R. J. King, D. Jenkins, A. J. Moseley, “Measurement of Absorption Coefficients of Ga.47In.53As over the Wavelength Range 1.0–1.7μm,” Electron. Lett. 21, 1187 (1985).
[CrossRef]

Kazmierski, K.

P. Poulain, M. Razeghi, K. Kazmierski, R. Blondeau, P. Philippe, “InGaAs Photodiodes Prepared by Low-Pressure MOCVD,” Electron. Lett. 21, 441 (1985).
[CrossRef]

King, R. J.

D. A. Humphreys, R. J. King, D. Jenkins, A. J. Moseley, “Measurement of Absorption Coefficients of Ga.47In.53As over the Wavelength Range 1.0–1.7μm,” Electron. Lett. 21, 1187 (1985).
[CrossRef]

Kolner, B. H.

S. Y. Wang, K. W. Carey, B. H. Kolner, “Front-side-Illuminated InP/InGaAs/InP p-i-n Photodiode with a −3 dB Bandwidth in Excess of 18 GHz,” IEEE Trans. Electron Devices ED-34, 938 (1987).
[CrossRef]

Kuphal, E.

H. Burkhard, H. W. Dinges, E. Kuphal, “Optical Properties of In1-xGaxP1-yAsy, InP, GaAs, and GaP Determined by Ellipsometry,” J. Appl. Phys. 53, 655 (1982).
[CrossRef]

Kuwatsuka, H.

S. Miura, H. Kuwatsuka, T. Mikawa, O. Wada, “Planar, Embedded InP/GalnAs p-i-n Photodiode with very High-Speed Response Characteristics, Appl. Phys. Lett. 49, 1522 (1986).
[CrossRef]

McCoy, R. J.

J. E. Bowers, C. A. Burrus, R. J. McCoy, “InGaAs PIN Photodetectors with Modulation Response to Millimetre Wavelengths,” Electron. Lett. 21, 812 (1985).
[CrossRef]

Mikawa, T.

S. Miura, H. Kuwatsuka, T. Mikawa, O. Wada, “Planar, Embedded InP/GalnAs p-i-n Photodiode with very High-Speed Response Characteristics, Appl. Phys. Lett. 49, 1522 (1986).
[CrossRef]

Mitschke, F.

J. E. Bowers, C. A. Burrus, F. Mitschke, “Millimetre-Waveguide-Mounted InGaAs Photodetectors,” Electron. Lett. 22, 633 (1986).
[CrossRef]

Miura, S.

S. Miura, H. Kuwatsuka, T. Mikawa, O. Wada, “Planar, Embedded InP/GalnAs p-i-n Photodiode with very High-Speed Response Characteristics, Appl. Phys. Lett. 49, 1522 (1986).
[CrossRef]

Miya, T.

T. Miya, Y. Terunuma, T. Hosaka, T. Miyashita, “Ultimate Low-Loss Single-Mode Fibre at 1.55 μm,” Electron. Lett. 15, 106 (1979).
[CrossRef]

Miyashita, T.

T. Miya, Y. Terunuma, T. Hosaka, T. Miyashita, “Ultimate Low-Loss Single-Mode Fibre at 1.55 μm,” Electron. Lett. 15, 106 (1979).
[CrossRef]

Moseley, A. J.

D. A. Humphreys, R. J. King, D. Jenkins, A. J. Moseley, “Measurement of Absorption Coefficients of Ga.47In.53As over the Wavelength Range 1.0–1.7μm,” Electron. Lett. 21, 1187 (1985).
[CrossRef]

Oertel, D.

K. W. Carey, S. Y. Wang, R. Hull, J. E. Turner, D. Oertel, R. Bauer, D. Bimberg, “Characterization of InP/InGaAs/InP Heterostructures Grown by Organometallic Vapor Phase Epitaxy for High-Speed p-i-n Photodiodes,” J. Cryst. Growth 77, 558 (1986).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, FL, 1985).

Payne, D. N.

D. N. Payne, W. A. Gambling, “Zero Material Dispersion in Optical Fibres,” Electron. Lett. 11, 176 (1975).
[CrossRef]

Pettit, G. D.

G. D. Pettit, W. J. Turner, “Refractive Index of InP,” J. Appl. Phys. 36, 2081 (1965).
[CrossRef]

Philippe, P.

P. Poulain, M. Razeghi, K. Kazmierski, R. Blondeau, P. Philippe, “InGaAs Photodiodes Prepared by Low-Pressure MOCVD,” Electron. Lett. 21, 441 (1985).
[CrossRef]

Poulain, P.

P. Poulain, M. Razeghi, K. Kazmierski, R. Blondeau, P. Philippe, “InGaAs Photodiodes Prepared by Low-Pressure MOCVD,” Electron. Lett. 21, 441 (1985).
[CrossRef]

Razeghi, M.

P. Poulain, M. Razeghi, K. Kazmierski, R. Blondeau, P. Philippe, “InGaAs Photodiodes Prepared by Low-Pressure MOCVD,” Electron. Lett. 21, 441 (1985).
[CrossRef]

Terunuma, Y.

T. Miya, Y. Terunuma, T. Hosaka, T. Miyashita, “Ultimate Low-Loss Single-Mode Fibre at 1.55 μm,” Electron. Lett. 15, 106 (1979).
[CrossRef]

Thetford, A.

A. Thetford, “A Method of Designing Three-Layer Anti-reflection Coatings,” Opt. Acta 16, 37 (1969).
[CrossRef]

Turner, J. E.

K. W. Carey, S. Y. Wang, R. Hull, J. E. Turner, D. Oertel, R. Bauer, D. Bimberg, “Characterization of InP/InGaAs/InP Heterostructures Grown by Organometallic Vapor Phase Epitaxy for High-Speed p-i-n Photodiodes,” J. Cryst. Growth 77, 558 (1986).
[CrossRef]

Turner, W. J.

G. D. Pettit, W. J. Turner, “Refractive Index of InP,” J. Appl. Phys. 36, 2081 (1965).
[CrossRef]

Wada, O.

S. Miura, H. Kuwatsuka, T. Mikawa, O. Wada, “Planar, Embedded InP/GalnAs p-i-n Photodiode with very High-Speed Response Characteristics, Appl. Phys. Lett. 49, 1522 (1986).
[CrossRef]

Wang, S. Y.

S. Y. Wang, K. W. Carey, B. H. Kolner, “Front-side-Illuminated InP/InGaAs/InP p-i-n Photodiode with a −3 dB Bandwidth in Excess of 18 GHz,” IEEE Trans. Electron Devices ED-34, 938 (1987).
[CrossRef]

K. W. Carey, S. Y. Wang, R. Hull, J. E. Turner, D. Oertel, R. Bauer, D. Bimberg, “Characterization of InP/InGaAs/InP Heterostructures Grown by Organometallic Vapor Phase Epitaxy for High-Speed p-i-n Photodiodes,” J. Cryst. Growth 77, 558 (1986).
[CrossRef]

Weast, R. C.

R. C. Weast, M. J. Astle, W. H. Beyer, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1984–1985).

Young, L.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Miura, H. Kuwatsuka, T. Mikawa, O. Wada, “Planar, Embedded InP/GalnAs p-i-n Photodiode with very High-Speed Response Characteristics, Appl. Phys. Lett. 49, 1522 (1986).
[CrossRef]

Electron. Lett. (6)

P. Poulain, M. Razeghi, K. Kazmierski, R. Blondeau, P. Philippe, “InGaAs Photodiodes Prepared by Low-Pressure MOCVD,” Electron. Lett. 21, 441 (1985).
[CrossRef]

D. A. Humphreys, R. J. King, D. Jenkins, A. J. Moseley, “Measurement of Absorption Coefficients of Ga.47In.53As over the Wavelength Range 1.0–1.7μm,” Electron. Lett. 21, 1187 (1985).
[CrossRef]

J. E. Bowers, C. A. Burrus, F. Mitschke, “Millimetre-Waveguide-Mounted InGaAs Photodetectors,” Electron. Lett. 22, 633 (1986).
[CrossRef]

J. E. Bowers, C. A. Burrus, R. J. McCoy, “InGaAs PIN Photodetectors with Modulation Response to Millimetre Wavelengths,” Electron. Lett. 21, 812 (1985).
[CrossRef]

D. N. Payne, W. A. Gambling, “Zero Material Dispersion in Optical Fibres,” Electron. Lett. 11, 176 (1975).
[CrossRef]

T. Miya, Y. Terunuma, T. Hosaka, T. Miyashita, “Ultimate Low-Loss Single-Mode Fibre at 1.55 μm,” Electron. Lett. 15, 106 (1979).
[CrossRef]

IEEE Trans. Electron Devices (1)

S. Y. Wang, K. W. Carey, B. H. Kolner, “Front-side-Illuminated InP/InGaAs/InP p-i-n Photodiode with a −3 dB Bandwidth in Excess of 18 GHz,” IEEE Trans. Electron Devices ED-34, 938 (1987).
[CrossRef]

J. Appl. Phys. (2)

H. Burkhard, H. W. Dinges, E. Kuphal, “Optical Properties of In1-xGaxP1-yAsy, InP, GaAs, and GaP Determined by Ellipsometry,” J. Appl. Phys. 53, 655 (1982).
[CrossRef]

G. D. Pettit, W. J. Turner, “Refractive Index of InP,” J. Appl. Phys. 36, 2081 (1965).
[CrossRef]

J. Cryst. Growth (1)

K. W. Carey, S. Y. Wang, R. Hull, J. E. Turner, D. Oertel, R. Bauer, D. Bimberg, “Characterization of InP/InGaAs/InP Heterostructures Grown by Organometallic Vapor Phase Epitaxy for High-Speed p-i-n Photodiodes,” J. Cryst. Growth 77, 558 (1986).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Acta (1)

A. Thetford, “A Method of Designing Three-Layer Anti-reflection Coatings,” Opt. Acta 16, 37 (1969).
[CrossRef]

Proc. IRE (1)

R. E. Collin, “Theory and Design of Wide-Band Multisection Quarter-Wave Transformers,” Proc. IRE 43, 179 (1955).
[CrossRef]

Solid-State Electron. (1)

V. Diadiuk, S. H. Groves, “Double-Heterostructure InGaAs/InP PIN Photodetectors,” Solid-State Electron. 29, 229 (1986).
[CrossRef]

Other (4)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, FL, 1985).

R. C. Weast, M. J. Astle, W. H. Beyer, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1984–1985).

P. Baumeister, “Optical Interference Coating Technology,” lecture notes for the five-day short course Engineering 823.17 at the UCLA Extension (1985).

R. E. Collin, Foundations for Microwave Engineering (McGraw-Hill, New York, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Cross section of the material structure of a frontside illuminated, dielectric coated, InP/In0.53Ga0.47As/InP photodetector. The doping concentration of each semiconductor layer is in parentheses.

Fig. 2
Fig. 2

Refractive indices of InP and In0.53Ga0.47As vs wavelength.

Fig. 3
Fig. 3

Extinction index of In0.53Ga0.47As vs wavelength.

Fig. 4
Fig. 4

Reflected power measurement system. The laser source is modulated by the Hewlett-Packard 8753A Network Analyzer in frequency steps up to 3 GHz. The Hewlett-Packard 11667A Power Splitter provides a reference signal back to the network analyzer. The polarizer and isolator protect the laser from reflected light. A portion of the reflected light from the sample under test is directed to the detector by the directional coupler. The detector converts the modulated light signal to an electrical signal and sends the information to the network analyzer. The network analyzer performs an inverse Fourier transform on the measurement data. The system is calibrated by reflecting the light away from the lensed fiber and then directly back toward the fiber with a gold surface.

Fig. 5
Fig. 5

Demonstration of the effect on the reflected power from a dielectric coating/InP layer/InGaAs layer/InP substrate structure by increasing the InP layer thickness by a quarterwave optical thickness. The InP layer thickness of trace B is thicker by a quarterwave optical thickness than that of trace A. The primary effect is to interchange the local minima and local maxima.

Fig. 6
Fig. 6

Demonstration of the effect on the reflected power from a dielectric coating/InP layer/InGaAs layer/InP substrate structure by increasing the InP layer thickness by increments of a halfwave optical thickness. The thickness of the InP layer for trace B is thicker by a halfwave optical thickness over that of trace A, and the InP layer thickness for trace C is thicker by a halfwave optical thickness over that of trace B. As the InP layer thickness increases, the local minimum at the center wavelength remains fixed, while all other local minima move closer to the center wavelength.

Fig. 7
Fig. 7

Demonstration of the effect on the reflected power from a dielectric coating/InP layer/InGaAs layer/InP substrate structure by varying the dielectric coating refractive index. For each value of refractive index the dielectric coating metric thickness was changed to keep the thickness a quarterwave optical thickness. The major effect is to decrease the value of the local minimum at 1350 nm at the expense of the adjacent local minima and maxima.

Fig. 8
Fig. 8

Plot of refractive index vs wavelength for two different material compositions of plasma enhanced chemical vapor deposited silicon nitride made by using two different SiH4 and NH3 gas flow settings. The refractive index and its dispersion vary with material composition.

Fig. 9
Fig. 9

Plot of calculated percent power reflected vs wavelength for three designs of silicon nitride/InP layer/InGaAs layer/InP substrate. The design parameters for trace A are nSiN(λ = 1315 nm) = 1.83, tSiN = 193.7 nm, tInP = 547.8 nm, and tInGaAs = 1500 nm. The design parameters for trace B are nSiN(λ = 1315 nm) = 1.83, tSiN = 187.6 nm, tInP = 1066.6 nm, and tInGaAs = 1500 nm. The design parameters for trace C are nSiN(λ = 1315 nm) = 2.17, tSiN = 164.6 nm, tInP = 1546.8 nm, and tInGaAs = 1500 nm. Air is the incident medium for the designs for traces A and B, whereas for C it is an epoxy of refractive index 1.54. All thicknesses are given as metric thicknesses.

Fig. 10
Fig. 10

Plot of calculated percent power reflected vs wavelength. The design parameters are nSiN(λ = 1315 nm) = 1.83, tSiN = 193.7 nm, tInP = 547.8 nm, and tInGaAs = 1555.2 nm. Air is the incident medium for the design, and all thicknesses are given as metric thicknesses.

Tables (2)

Tables Icon

Table I Calculated and Measured Percent Power Reflected at Wavelengths of 1312 and 1559 nm for Sample A and B

Tables Icon

Table II Design Parameters for Four Antireflection Coatings for a Silicon Nitride/InP/InGaAs/InP Structure

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ c = 2 λ L λ H λ L + λ H ,
t off = λ c tan - 1 | 2 k InGaAs n InP n InP 2 - n InGaAs 2 - k InGaAs 2 | 4 ,
n ( λ ) = n ( λ = 1315 nm ) + 0.039 - 1.51 E - 5 * λ - 1.11 E - 8 * λ 2 + [ n ( λ = 1315 nm ) - 1.83 0.30 ] × [ - 0.004 + 1.46 E - 4 * λ - 1.09 E - 7 * λ 2 ]

Metrics