Abstract

Gelatin films glued to an O-ring are proposed as a new procedure to record interference patterns when a CO2 laser is used as an infrared light source. With this method the unwanted effects given by a substrate, on which the thin recording film is laid, are avoided. To characterize the medium, interferometric studies including the recording of diffraction gratings have been done. Diffraction efficiencies of ~30% have been obtained when coherent red light (0.6328-μm wavelength) was sent normally to the gratings. An example of an infrared recorded hologram is shown.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. P. Sosnowski, H. Kogelnik, “Ultraviolet Hologram Recording in Dichromated Gelatin,” Appl. Opt. 9, 2186 (1970)
    [CrossRef] [PubMed]
  2. K. J. Ilcisin, R. Fedosejevs, “Diffraction Production of Gratings on Plastics Substrates Using 248-nm KrF Laser Radiation,” Appl. Opt. 26, 396 (1987).
    [CrossRef] [PubMed]
  3. C. S. Ih, N. S. Kopeika, E. G. LeDet, “Characteristics of Active and Passive 2-D Holographic Scanner Imaging Systems for the Middle Infrared,” Appl. Opt. 19, 2041 (1980).
    [CrossRef] [PubMed]
  4. W. B. Veldkamp, G. J. Swanson, D. C. Shaver, “High Efficiency Binary Lenses,” Opt. Commun. 53, 353 (1985).
    [CrossRef]
  5. N. C. Gallagher, J. C. Angus, F. E. Coffield, R. V. Edwards, J. A. Mann, “Binary Phase Digital Reflection Holograms: Fabrication and Potential Applications,” Appl. Opt. 16, 413 (1977).
    [CrossRef] [PubMed]
  6. J. C. Angus, F. E. Coffield, R. V. Edwards, J. A. Mann, R. W. Rugh, N. C. Gallagher, “Infrared Image Construction with Computer-Generated Reflection Holograms,” Appl. Opt. 16, 2798 (1977).
    [CrossRef] [PubMed]
  7. S. M. Arnold, “Electron Beam Fabrication of Computer Generated Holograms,” Opt. Eng. 24, 803 (1985).
    [CrossRef]
  8. H. Farhoosh, M. R. Feldman, S. H. Lee, C. C. Guest, Y. Fainman, R. Eschbach, “Comparison of Binary Encoding Schemes for Electron-Beam Fabrication of Computer Generated Holograms,” Appl. Opt. 26, 4361 (1987).
    [CrossRef] [PubMed]
  9. W. A. Simpson, W. E. Deeds, “Real-Time Visual Reconstruction of Infrared Holograms,” Appl. Opt. 9, 499 (1970).
    [CrossRef] [PubMed]
  10. P. R. Forman, F. C. Jahoda, R. W. Peterson, “Two-Dimensional Interferometry with a Pulsed 10.6-μm Laser,” Appl. Opt. 11, 477 (1972).
    [CrossRef] [PubMed]
  11. G. Decker, H. Herold, H. Rohr, “Holography and Holographic Interferometry with Pulsed High Power Infrared Lasers,” Appl. Phys. Lett. 20, 490 (1972).
    [CrossRef]
  12. P. R. Forman, S. Humphries, R. W. Peterson, “Pulsed Holographic Interferometry at 10.6 μm,” Appl. Phys. Lett. 22, 537 (1973).
    [CrossRef]
  13. E. M. Barkhudarov, V. R. Berezovskii, G. V. Gelashvili, M. I. Taktakishvili, T. Ya. Chelidze, V. V. Chichinadze, “Possible Use of 10.6 μm Holograms for Plasma Diagnostics,” Sov. Tech. Phys. Lett. 2, 425 (1977).
  14. R. R. Roberts, T. D. Black, “Infrared Holograms Recorded at 10.6 μm and Reconstructed at 0.6328 μm,” Appl. Opt. 15, 2018 (1976).
    [CrossRef] [PubMed]
  15. S. Chivian, R. N. Claytor, D. D. Eden, R. B. Hemphill, “Infrared Recording with Thermochromic Cu2HgI4,” Appl. Opt. 11, 2649 (1972).
    [CrossRef] [PubMed]
  16. S. Chivian, R. N. Claytor, D. D. Eden, “Infrared Holography at 10.6 μm,” Appl. Phys. Lett. 15, 123 (1969).
    [CrossRef]
  17. M. Yang, D. W. Sweeney, “Infrared Holography Using the Thermochromic Material Cu2HgI4,” Appl. Opt. 18, 2398 (1979).
    [CrossRef] [PubMed]
  18. S. Kobayashi, K. Kurihara, “Infrared Holography with Wax and Gelatin Films,” Appl. Phys. Lett. 19, 482 (1971).
    [CrossRef]
  19. J. Lewandowski, B. Mongeau, M. Cormier, “Real-Time Interferometry Using IR Holography on Oil Films,” Appl. Opt. 23, 242 (1984).
    [CrossRef] [PubMed]
  20. M. Rioux, M. Blanchard, M. Cormier, R. Beaulieu, D. Belanger, “Plastic Recording Media for Holography at 10.6 μm,” Appl. Opt. 16, 1876 (1977).
    [CrossRef] [PubMed]
  21. T. Izawa, M. Kamiyama, “Infrared Holography with Organic Photochromic Films,” Appl. Phys. Lett. 15, 201 (1969).
    [CrossRef]
  22. B. P. Zakharchenya, F. A. Chudnovskii, Z. I. Shteingul”ts “Infrared Holography in FTIROS with CO2 Laser,” Sov. Tech. Phys. Lett. 9, 32 (1983).
  23. C. E. K. Mees, T. H. James, The Theory of the Photographic Process (Macmillan, New York, 1966).
  24. H. M. Smith, Ed., Holographic Recording Materials (Springer-Verlag, New York, 1977).
    [CrossRef]
  25. J. H. Altman, “Pure Relief Images on Type 649-F Plates,” Appl. Opt. 5, 1689 (1966).
    [CrossRef] [PubMed]

1987

1985

W. B. Veldkamp, G. J. Swanson, D. C. Shaver, “High Efficiency Binary Lenses,” Opt. Commun. 53, 353 (1985).
[CrossRef]

S. M. Arnold, “Electron Beam Fabrication of Computer Generated Holograms,” Opt. Eng. 24, 803 (1985).
[CrossRef]

1984

1983

B. P. Zakharchenya, F. A. Chudnovskii, Z. I. Shteingul”ts “Infrared Holography in FTIROS with CO2 Laser,” Sov. Tech. Phys. Lett. 9, 32 (1983).

1980

1979

1977

1976

1973

P. R. Forman, S. Humphries, R. W. Peterson, “Pulsed Holographic Interferometry at 10.6 μm,” Appl. Phys. Lett. 22, 537 (1973).
[CrossRef]

1972

1971

S. Kobayashi, K. Kurihara, “Infrared Holography with Wax and Gelatin Films,” Appl. Phys. Lett. 19, 482 (1971).
[CrossRef]

1970

1969

T. Izawa, M. Kamiyama, “Infrared Holography with Organic Photochromic Films,” Appl. Phys. Lett. 15, 201 (1969).
[CrossRef]

S. Chivian, R. N. Claytor, D. D. Eden, “Infrared Holography at 10.6 μm,” Appl. Phys. Lett. 15, 123 (1969).
[CrossRef]

1966

Altman, J. H.

Angus, J. C.

Arnold, S. M.

S. M. Arnold, “Electron Beam Fabrication of Computer Generated Holograms,” Opt. Eng. 24, 803 (1985).
[CrossRef]

Barkhudarov, E. M.

E. M. Barkhudarov, V. R. Berezovskii, G. V. Gelashvili, M. I. Taktakishvili, T. Ya. Chelidze, V. V. Chichinadze, “Possible Use of 10.6 μm Holograms for Plasma Diagnostics,” Sov. Tech. Phys. Lett. 2, 425 (1977).

Beaulieu, R.

Belanger, D.

Berezovskii, V. R.

E. M. Barkhudarov, V. R. Berezovskii, G. V. Gelashvili, M. I. Taktakishvili, T. Ya. Chelidze, V. V. Chichinadze, “Possible Use of 10.6 μm Holograms for Plasma Diagnostics,” Sov. Tech. Phys. Lett. 2, 425 (1977).

Black, T. D.

Blanchard, M.

Chelidze, T. Ya.

E. M. Barkhudarov, V. R. Berezovskii, G. V. Gelashvili, M. I. Taktakishvili, T. Ya. Chelidze, V. V. Chichinadze, “Possible Use of 10.6 μm Holograms for Plasma Diagnostics,” Sov. Tech. Phys. Lett. 2, 425 (1977).

Chichinadze, V. V.

E. M. Barkhudarov, V. R. Berezovskii, G. V. Gelashvili, M. I. Taktakishvili, T. Ya. Chelidze, V. V. Chichinadze, “Possible Use of 10.6 μm Holograms for Plasma Diagnostics,” Sov. Tech. Phys. Lett. 2, 425 (1977).

Chivian, S.

S. Chivian, R. N. Claytor, D. D. Eden, R. B. Hemphill, “Infrared Recording with Thermochromic Cu2HgI4,” Appl. Opt. 11, 2649 (1972).
[CrossRef] [PubMed]

S. Chivian, R. N. Claytor, D. D. Eden, “Infrared Holography at 10.6 μm,” Appl. Phys. Lett. 15, 123 (1969).
[CrossRef]

Chudnovskii, F. A.

B. P. Zakharchenya, F. A. Chudnovskii, Z. I. Shteingul”ts “Infrared Holography in FTIROS with CO2 Laser,” Sov. Tech. Phys. Lett. 9, 32 (1983).

Claytor, R. N.

S. Chivian, R. N. Claytor, D. D. Eden, R. B. Hemphill, “Infrared Recording with Thermochromic Cu2HgI4,” Appl. Opt. 11, 2649 (1972).
[CrossRef] [PubMed]

S. Chivian, R. N. Claytor, D. D. Eden, “Infrared Holography at 10.6 μm,” Appl. Phys. Lett. 15, 123 (1969).
[CrossRef]

Coffield, F. E.

Cormier, M.

Decker, G.

G. Decker, H. Herold, H. Rohr, “Holography and Holographic Interferometry with Pulsed High Power Infrared Lasers,” Appl. Phys. Lett. 20, 490 (1972).
[CrossRef]

Deeds, W. E.

Eden, D. D.

S. Chivian, R. N. Claytor, D. D. Eden, R. B. Hemphill, “Infrared Recording with Thermochromic Cu2HgI4,” Appl. Opt. 11, 2649 (1972).
[CrossRef] [PubMed]

S. Chivian, R. N. Claytor, D. D. Eden, “Infrared Holography at 10.6 μm,” Appl. Phys. Lett. 15, 123 (1969).
[CrossRef]

Edwards, R. V.

Eschbach, R.

Fainman, Y.

Farhoosh, H.

Fedosejevs, R.

Feldman, M. R.

Forman, P. R.

P. R. Forman, S. Humphries, R. W. Peterson, “Pulsed Holographic Interferometry at 10.6 μm,” Appl. Phys. Lett. 22, 537 (1973).
[CrossRef]

P. R. Forman, F. C. Jahoda, R. W. Peterson, “Two-Dimensional Interferometry with a Pulsed 10.6-μm Laser,” Appl. Opt. 11, 477 (1972).
[CrossRef] [PubMed]

Gallagher, N. C.

Gelashvili, G. V.

E. M. Barkhudarov, V. R. Berezovskii, G. V. Gelashvili, M. I. Taktakishvili, T. Ya. Chelidze, V. V. Chichinadze, “Possible Use of 10.6 μm Holograms for Plasma Diagnostics,” Sov. Tech. Phys. Lett. 2, 425 (1977).

Guest, C. C.

Hemphill, R. B.

Herold, H.

G. Decker, H. Herold, H. Rohr, “Holography and Holographic Interferometry with Pulsed High Power Infrared Lasers,” Appl. Phys. Lett. 20, 490 (1972).
[CrossRef]

Humphries, S.

P. R. Forman, S. Humphries, R. W. Peterson, “Pulsed Holographic Interferometry at 10.6 μm,” Appl. Phys. Lett. 22, 537 (1973).
[CrossRef]

Ih, C. S.

Ilcisin, K. J.

Izawa, T.

T. Izawa, M. Kamiyama, “Infrared Holography with Organic Photochromic Films,” Appl. Phys. Lett. 15, 201 (1969).
[CrossRef]

Jahoda, F. C.

James, T. H.

C. E. K. Mees, T. H. James, The Theory of the Photographic Process (Macmillan, New York, 1966).

Kamiyama, M.

T. Izawa, M. Kamiyama, “Infrared Holography with Organic Photochromic Films,” Appl. Phys. Lett. 15, 201 (1969).
[CrossRef]

Kobayashi, S.

S. Kobayashi, K. Kurihara, “Infrared Holography with Wax and Gelatin Films,” Appl. Phys. Lett. 19, 482 (1971).
[CrossRef]

Kogelnik, H.

Kopeika, N. S.

Kurihara, K.

S. Kobayashi, K. Kurihara, “Infrared Holography with Wax and Gelatin Films,” Appl. Phys. Lett. 19, 482 (1971).
[CrossRef]

LeDet, E. G.

Lee, S. H.

Lewandowski, J.

Mann, J. A.

Mees, C. E. K.

C. E. K. Mees, T. H. James, The Theory of the Photographic Process (Macmillan, New York, 1966).

Mongeau, B.

Peterson, R. W.

P. R. Forman, S. Humphries, R. W. Peterson, “Pulsed Holographic Interferometry at 10.6 μm,” Appl. Phys. Lett. 22, 537 (1973).
[CrossRef]

P. R. Forman, F. C. Jahoda, R. W. Peterson, “Two-Dimensional Interferometry with a Pulsed 10.6-μm Laser,” Appl. Opt. 11, 477 (1972).
[CrossRef] [PubMed]

Rioux, M.

Roberts, R. R.

Rohr, H.

G. Decker, H. Herold, H. Rohr, “Holography and Holographic Interferometry with Pulsed High Power Infrared Lasers,” Appl. Phys. Lett. 20, 490 (1972).
[CrossRef]

Rugh, R. W.

Shaver, D. C.

W. B. Veldkamp, G. J. Swanson, D. C. Shaver, “High Efficiency Binary Lenses,” Opt. Commun. 53, 353 (1985).
[CrossRef]

Shteingul”ts, Z. I.

B. P. Zakharchenya, F. A. Chudnovskii, Z. I. Shteingul”ts “Infrared Holography in FTIROS with CO2 Laser,” Sov. Tech. Phys. Lett. 9, 32 (1983).

Simpson, W. A.

Sosnowski, T. P.

Swanson, G. J.

W. B. Veldkamp, G. J. Swanson, D. C. Shaver, “High Efficiency Binary Lenses,” Opt. Commun. 53, 353 (1985).
[CrossRef]

Sweeney, D. W.

Taktakishvili, M. I.

E. M. Barkhudarov, V. R. Berezovskii, G. V. Gelashvili, M. I. Taktakishvili, T. Ya. Chelidze, V. V. Chichinadze, “Possible Use of 10.6 μm Holograms for Plasma Diagnostics,” Sov. Tech. Phys. Lett. 2, 425 (1977).

Veldkamp, W. B.

W. B. Veldkamp, G. J. Swanson, D. C. Shaver, “High Efficiency Binary Lenses,” Opt. Commun. 53, 353 (1985).
[CrossRef]

Yang, M.

Zakharchenya, B. P.

B. P. Zakharchenya, F. A. Chudnovskii, Z. I. Shteingul”ts “Infrared Holography in FTIROS with CO2 Laser,” Sov. Tech. Phys. Lett. 9, 32 (1983).

Appl. Opt.

S. Chivian, R. N. Claytor, D. D. Eden, R. B. Hemphill, “Infrared Recording with Thermochromic Cu2HgI4,” Appl. Opt. 11, 2649 (1972).
[CrossRef] [PubMed]

N. C. Gallagher, J. C. Angus, F. E. Coffield, R. V. Edwards, J. A. Mann, “Binary Phase Digital Reflection Holograms: Fabrication and Potential Applications,” Appl. Opt. 16, 413 (1977).
[CrossRef] [PubMed]

M. Rioux, M. Blanchard, M. Cormier, R. Beaulieu, D. Belanger, “Plastic Recording Media for Holography at 10.6 μm,” Appl. Opt. 16, 1876 (1977).
[CrossRef] [PubMed]

M. Yang, D. W. Sweeney, “Infrared Holography Using the Thermochromic Material Cu2HgI4,” Appl. Opt. 18, 2398 (1979).
[CrossRef] [PubMed]

C. S. Ih, N. S. Kopeika, E. G. LeDet, “Characteristics of Active and Passive 2-D Holographic Scanner Imaging Systems for the Middle Infrared,” Appl. Opt. 19, 2041 (1980).
[CrossRef] [PubMed]

J. Lewandowski, B. Mongeau, M. Cormier, “Real-Time Interferometry Using IR Holography on Oil Films,” Appl. Opt. 23, 242 (1984).
[CrossRef] [PubMed]

K. J. Ilcisin, R. Fedosejevs, “Diffraction Production of Gratings on Plastics Substrates Using 248-nm KrF Laser Radiation,” Appl. Opt. 26, 396 (1987).
[CrossRef] [PubMed]

H. Farhoosh, M. R. Feldman, S. H. Lee, C. C. Guest, Y. Fainman, R. Eschbach, “Comparison of Binary Encoding Schemes for Electron-Beam Fabrication of Computer Generated Holograms,” Appl. Opt. 26, 4361 (1987).
[CrossRef] [PubMed]

T. P. Sosnowski, H. Kogelnik, “Ultraviolet Hologram Recording in Dichromated Gelatin,” Appl. Opt. 9, 2186 (1970)
[CrossRef] [PubMed]

P. R. Forman, F. C. Jahoda, R. W. Peterson, “Two-Dimensional Interferometry with a Pulsed 10.6-μm Laser,” Appl. Opt. 11, 477 (1972).
[CrossRef] [PubMed]

J. C. Angus, F. E. Coffield, R. V. Edwards, J. A. Mann, R. W. Rugh, N. C. Gallagher, “Infrared Image Construction with Computer-Generated Reflection Holograms,” Appl. Opt. 16, 2798 (1977).
[CrossRef] [PubMed]

J. H. Altman, “Pure Relief Images on Type 649-F Plates,” Appl. Opt. 5, 1689 (1966).
[CrossRef] [PubMed]

W. A. Simpson, W. E. Deeds, “Real-Time Visual Reconstruction of Infrared Holograms,” Appl. Opt. 9, 499 (1970).
[CrossRef] [PubMed]

R. R. Roberts, T. D. Black, “Infrared Holograms Recorded at 10.6 μm and Reconstructed at 0.6328 μm,” Appl. Opt. 15, 2018 (1976).
[CrossRef] [PubMed]

Appl. Phys. Lett.

G. Decker, H. Herold, H. Rohr, “Holography and Holographic Interferometry with Pulsed High Power Infrared Lasers,” Appl. Phys. Lett. 20, 490 (1972).
[CrossRef]

P. R. Forman, S. Humphries, R. W. Peterson, “Pulsed Holographic Interferometry at 10.6 μm,” Appl. Phys. Lett. 22, 537 (1973).
[CrossRef]

S. Chivian, R. N. Claytor, D. D. Eden, “Infrared Holography at 10.6 μm,” Appl. Phys. Lett. 15, 123 (1969).
[CrossRef]

S. Kobayashi, K. Kurihara, “Infrared Holography with Wax and Gelatin Films,” Appl. Phys. Lett. 19, 482 (1971).
[CrossRef]

T. Izawa, M. Kamiyama, “Infrared Holography with Organic Photochromic Films,” Appl. Phys. Lett. 15, 201 (1969).
[CrossRef]

Opt. Commun.

W. B. Veldkamp, G. J. Swanson, D. C. Shaver, “High Efficiency Binary Lenses,” Opt. Commun. 53, 353 (1985).
[CrossRef]

Opt. Eng.

S. M. Arnold, “Electron Beam Fabrication of Computer Generated Holograms,” Opt. Eng. 24, 803 (1985).
[CrossRef]

Sov. Tech. Phys. Lett.

E. M. Barkhudarov, V. R. Berezovskii, G. V. Gelashvili, M. I. Taktakishvili, T. Ya. Chelidze, V. V. Chichinadze, “Possible Use of 10.6 μm Holograms for Plasma Diagnostics,” Sov. Tech. Phys. Lett. 2, 425 (1977).

B. P. Zakharchenya, F. A. Chudnovskii, Z. I. Shteingul”ts “Infrared Holography in FTIROS with CO2 Laser,” Sov. Tech. Phys. Lett. 9, 32 (1983).

Other

C. E. K. Mees, T. H. James, The Theory of the Photographic Process (Macmillan, New York, 1966).

H. M. Smith, Ed., Holographic Recording Materials (Springer-Verlag, New York, 1977).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Gelatin film transmittance vs wavelength. Layer thickness is the parameter.

Fig. 2
Fig. 2

Diagram of the recording-reading geometry used to characterize gelatin film as an IR recording medium. A germanium beam splitter was used to divide the beam: Cooper mirrors redirected the beam. A He–Ne laser (stabilized) investigated grating formation during recording time.

Fig. 3
Fig. 3

Diffraction efficiency vs time. Exposure time is the parameter. Layer thickness is <10 μm.

Fig. 4
Fig. 4

(a) Diffracted orders given by an interference grating recorded with an appropriate exposure time, (b) Diffracted orders when the interference grating was recorded with an overexposure time.

Fig. 5
Fig. 5

Diffraction efficiency vs time. Time of exposure is the parameter. Gelatin thickness was ~10 μm

Fig. 6
Fig. 6

Diffraction efficiency vs time. Time of exposure is the parameter. Gelatin thickness was ~20 μm

Fig. 7
Fig. 7

Grating diffraction efficiency behavior as a function of time; spatial frequency was 3 lines/mm; (a) texp = 140 ms; (b) texp = 240 ms.

Fig. 8
Fig. 8

Far-field diffraction patterns given by two IR recorded gratings when normally illuminated by a He–Ne beam. The first row, (a) and (b), shows two patterns for two gratings recorded with exposure times of 140 and 240 ms. The second row, (c) and (d), shows diffraction patterns for the same gratings but with a glass plate wedge placed in close contact with the back surface of the gelatin film and a matching-index liquid poured between them. Note that the left-hand side patterns (a) and (c) look almost the same; however the right-hand side patterns (b) and (d) show a difference. No high orders are present in (d).

Fig. 9
Fig. 9

Diffraction efficiency vs time. Time of exposure is the parameter. Layer thickness was ~50 μm.

Fig. 10
Fig. 10

Gelatin layer ~50 μm thick with two overexposured recordings. Note that in the central areas the gelatin has melted due to the intense recording heat. Recorded interference fringes are visible at the periphery of each recording. Scale is in millimeters.

Fig. 11
Fig. 11

Maximum diffraction efficiency vs time of exposure and exposure energy. Layer thickness is the parameter.

Fig. 12
Fig. 12

(a) Interference grating studied with an ordinary microscope. Pattern spatial frequency is ~7 lines/mm. (b) Image given by an interference microscope when a recorded grating was investigated. Note that the grating surface relief presents spatial changes. This is evident when the interference line, marked with an arrow, is seen; the first five peaks, taken from right to left, present greater height than the rest of the peaks. Spatial frequency is ~11 lines/mm. (c) and (d) Field of view of an interference microscope when two recorded gratings are studied. Spatial frequency for both ~3 lines/mm. (c) texp = 140 ms; (d) texp = 240 ms.

Fig. 13
Fig. 13

Image given by an IR recorded hologram when reconstruction was made with He–Ne laser light.

Metrics