Abstract

This paper presents experimental results using an atmospheric backscatter dual CO2 laser differential absorption lidar (DIAL). It is shown that DIAL signals can be averaged to obtain an N−1/2 dependence decrease in the standard deviation of the ratio of backscattered returns from two lasers, where N is the number of DIAL signals averaged, and that such a lidar system can make measurements of gas concentrations with a precision of 0.7% in absorptance over 75 m in a short measurement time when the signal strength is high. Factors that eventually limit the rate of improvement in the SNR, such as changes in the ratio of the absorption and/or backscatter at the two laser frequencies and background noise are discussed. In addition, it is noted that DIAL measurements made using hard-target backscatter often show departures from N−1/2 dependence improvement in the standard deviation, because they are further limited by the combined effects of atmospheric turbulence and speckle, since the relative reproducibility of the speckle pattern on the receiver gives rise to correlations of the lidar signals.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. B. Grant, “Laser Remote Sensing Techniques,” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. W. Solarz, J. A. Paisner, Eds. (Marcel Dekker, New York, 1987), p. 565.
  2. N. Menyuk, D. K. Killinger, “Temporal Correlation Measurements of Pulsed Dual CO2 Lidar Returns,” Opt. Lett. 6, 301 (1981).
    [CrossRef] [PubMed]
  3. D. K. Killinger, N. Menyuk, “Effect of Turbulence-Induced Correlation on Laser Remote Sensing Errors,” Appl. Phys. Lett. 38, 968 (1981).
    [CrossRef]
  4. D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” IEEE J. Quantum Electron. QE-17, 1917 (1981).
    [CrossRef]
  5. N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser Remote Sensing of Hydrazine, MMH, and UDMH Using a Differential-Absorption CO2 Lidar,” Appl. Opt. 21, 2275 (1982).
    [CrossRef] [PubMed]
  6. N. Menyuk, D. K. Killinger, C. R. Menyuk, “Limitations of Signal Averaging due to Temporal Correlation in Laser Remote-Sensing Measurements,” Appl. Opt. 21, 3377 (1982).
    [CrossRef] [PubMed]
  7. D. K. Killinger, N. Menyuk, W. E. DeFeo, “Experimental Comparison of Heterodyne and Direct Detection for Pulsed Differential Absorption CO2 Lidar,” Appl. Opt. 22, 682 (1983).
    [CrossRef] [PubMed]
  8. N. Menyuk, D. K. Killinger, “Assessment of Relative Error Sources in IR DIAL Measurement Accuracy,” Appl. Opt. 22, 2690 (1983).
    [CrossRef] [PubMed]
  9. N. Menyuk, D. K. Killinger, C. R. Menyuk, “Error Reduction in Laser Remote Sensing: Combined Effects of Cross Correlation and Signal Averaging,” Appl. Opt. 24, 118 (1985).
    [CrossRef] [PubMed]
  10. D. K. Killinger, N. Menyuk, “Laser Remote Sensing of the Atmosphere,” Science 235, 37 (1987).
    [CrossRef] [PubMed]
  11. M. J. T. Milton, P. T. Woods, “Pulse Averaging Methods for a Laser Remote Monitoring System Using Atmospheric Back-scatter,” Appl. Opt. 26, 2598 (1987).
    [CrossRef] [PubMed]
  12. W. Staehr, W. Lahmann, C. Weitkamp, “Range-Resolved Differential Absorption Lidar: Optimization of Range and Sensitivity,” Appl. Opt.24, 1950 (1985) and private communication.
    [CrossRef] [PubMed]
  13. T. Fukuda, Y. Matsuura, T. Mori, “Sensitivity of Coherent Range-Resolved Differential Absorption Lidar,” Appl. Opt. 23, 2026 (1984).
    [CrossRef] [PubMed]
  14. R. M. Hardesty, “Measurement of Range-Resolved Water Vapor Concentration by Coherent CO2 Differential Absorption Lidar,” NOAA Tech. Memo WPL-118, Boulder, CO (Mar.1984).
  15. W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL Measurements of Water Vapor,” Appl. Opt. 26, 3033 (1987).
    [CrossRef] [PubMed]
  16. W. B. Grant, “A Critical Evaluation of Water Vapor Absorption Coefficient Measurements in the 840 to 1100 cm−1 Spectral Region,” JPL Tech. Report 87–34 (15Dec.1987).
  17. M. H. DeGroot, Probability and Statistics (Addison-Wesley, Reading, MA, 1975), p. 185.
  18. W. B. Grant, “He–Ne and cw CO2 Laser Long-Path Systems for Gas Detection,” Appl. Opt. 25, 709 (1986).
    [CrossRef] [PubMed]
  19. Y. Sasano, E. V. Browell, S. Ismail, “Error Caused by Using a Constant Extinction/Backscattering Ratio in the Lidar Solution,” Appl. Opt. 24, 3929 (1985).
    [CrossRef] [PubMed]
  20. E. V. Browell, S. Ismail, S. T. Shipley, “Ultraviolet Measurements of O3 Profiles in Regions of Spatially Inhomogeneous Aerosols,” Appl. Opt. 24, 2827 (1985).
    [CrossRef] [PubMed]
  21. G. Ancellet, R. T. Menzies, “Atmospheric Correlation-Time Measurements and Effects on Coherent Doppler Lidar,” J. Opt. Soc. Am. A 4, 367 (1987).
    [CrossRef]
  22. B. J. Rye, “Power Ratio Estimation in Incoherent Backscatter Lidar: Heterodyne Receiver with Square Law Detection,” J. Clim. Appl. Meterol. 22, 1899 (1983).
    [CrossRef]
  23. R. E. Warren, “Effect of Pulse-Pair Correlation on Differential Absorption Lidar,” Appl. Opt. 24, 3472 (1985).
    [CrossRef] [PubMed]
  24. J. H. Shapiro, “Correlation States of Laser Speckle in Heterodyne Detection,” Appl. Opt. 24, 1883 (1985).
    [CrossRef] [PubMed]
  25. P. H. Flamant, R. T. Menzies, M. J. Kavaya, “Evidence for Speckle Effects on Pulsed CO2 Lidar Signal Returns from Remote Targets,” Appl. Opt. 23, 1412 (1984).
    [CrossRef] [PubMed]
  26. W. B. Grant, “Effect of Differential Spectral Reflectance on DIAL Measurements Using Topographic Targets,” Appl. Opt. 21, 2390 (1982).
    [CrossRef] [PubMed]
  27. P. Vujkovic Cvijin, D. Ignjatijevic, I. Mendas, M. Sreckovic, L. Pantani, P. I. Pippi, “Reflectance Spectra of Terrestrial Surface Materials at CO2 Laser Wavelengths: Effects on DIAL and Geological Remote Sensing,” Appl. Opt. 26, 4323 (1987).
    [CrossRef]

1987 (5)

1986 (1)

1985 (5)

1984 (2)

1983 (3)

1982 (3)

1981 (3)

N. Menyuk, D. K. Killinger, “Temporal Correlation Measurements of Pulsed Dual CO2 Lidar Returns,” Opt. Lett. 6, 301 (1981).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, “Effect of Turbulence-Induced Correlation on Laser Remote Sensing Errors,” Appl. Phys. Lett. 38, 968 (1981).
[CrossRef]

D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

Ancellet, G.

Brothers, A. M.

Browell, E. V.

DeFeo, W. E.

DeGroot, M. H.

M. H. DeGroot, Probability and Statistics (Addison-Wesley, Reading, MA, 1975), p. 185.

Flamant, P. H.

Fukuda, T.

Grant, W. B.

W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL Measurements of Water Vapor,” Appl. Opt. 26, 3033 (1987).
[CrossRef] [PubMed]

W. B. Grant, “He–Ne and cw CO2 Laser Long-Path Systems for Gas Detection,” Appl. Opt. 25, 709 (1986).
[CrossRef] [PubMed]

W. B. Grant, “Effect of Differential Spectral Reflectance on DIAL Measurements Using Topographic Targets,” Appl. Opt. 21, 2390 (1982).
[CrossRef] [PubMed]

W. B. Grant, “Laser Remote Sensing Techniques,” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. W. Solarz, J. A. Paisner, Eds. (Marcel Dekker, New York, 1987), p. 565.

W. B. Grant, “A Critical Evaluation of Water Vapor Absorption Coefficient Measurements in the 840 to 1100 cm−1 Spectral Region,” JPL Tech. Report 87–34 (15Dec.1987).

Hardesty, R. M.

R. M. Hardesty, “Measurement of Range-Resolved Water Vapor Concentration by Coherent CO2 Differential Absorption Lidar,” NOAA Tech. Memo WPL-118, Boulder, CO (Mar.1984).

Ignjatijevic, D.

Ismail, S.

Kavaya, M. J.

Killinger, D. K.

Lahmann, W.

W. Staehr, W. Lahmann, C. Weitkamp, “Range-Resolved Differential Absorption Lidar: Optimization of Range and Sensitivity,” Appl. Opt.24, 1950 (1985) and private communication.
[CrossRef] [PubMed]

Margolis, J. S.

Matsuura, Y.

Mendas, I.

Menyuk, C. R.

Menyuk, N.

Menzies, R. T.

Milton, M. J. T.

Mori, T.

Pantani, L.

Pippi, P. I.

Rye, B. J.

B. J. Rye, “Power Ratio Estimation in Incoherent Backscatter Lidar: Heterodyne Receiver with Square Law Detection,” J. Clim. Appl. Meterol. 22, 1899 (1983).
[CrossRef]

Sasano, Y.

Shapiro, J. H.

Shipley, S. T.

Sreckovic, M.

Staehr, W.

W. Staehr, W. Lahmann, C. Weitkamp, “Range-Resolved Differential Absorption Lidar: Optimization of Range and Sensitivity,” Appl. Opt.24, 1950 (1985) and private communication.
[CrossRef] [PubMed]

Tratt, D. M.

Vujkovic Cvijin, P.

Warren, R. E.

Weitkamp, C.

W. Staehr, W. Lahmann, C. Weitkamp, “Range-Resolved Differential Absorption Lidar: Optimization of Range and Sensitivity,” Appl. Opt.24, 1950 (1985) and private communication.
[CrossRef] [PubMed]

Woods, P. T.

Appl. Opt. (16)

N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser Remote Sensing of Hydrazine, MMH, and UDMH Using a Differential-Absorption CO2 Lidar,” Appl. Opt. 21, 2275 (1982).
[CrossRef] [PubMed]

W. B. Grant, “Effect of Differential Spectral Reflectance on DIAL Measurements Using Topographic Targets,” Appl. Opt. 21, 2390 (1982).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, C. R. Menyuk, “Limitations of Signal Averaging due to Temporal Correlation in Laser Remote-Sensing Measurements,” Appl. Opt. 21, 3377 (1982).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, W. E. DeFeo, “Experimental Comparison of Heterodyne and Direct Detection for Pulsed Differential Absorption CO2 Lidar,” Appl. Opt. 22, 682 (1983).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, “Assessment of Relative Error Sources in IR DIAL Measurement Accuracy,” Appl. Opt. 22, 2690 (1983).
[CrossRef] [PubMed]

P. H. Flamant, R. T. Menzies, M. J. Kavaya, “Evidence for Speckle Effects on Pulsed CO2 Lidar Signal Returns from Remote Targets,” Appl. Opt. 23, 1412 (1984).
[CrossRef] [PubMed]

T. Fukuda, Y. Matsuura, T. Mori, “Sensitivity of Coherent Range-Resolved Differential Absorption Lidar,” Appl. Opt. 23, 2026 (1984).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, C. R. Menyuk, “Error Reduction in Laser Remote Sensing: Combined Effects of Cross Correlation and Signal Averaging,” Appl. Opt. 24, 118 (1985).
[CrossRef] [PubMed]

J. H. Shapiro, “Correlation States of Laser Speckle in Heterodyne Detection,” Appl. Opt. 24, 1883 (1985).
[CrossRef] [PubMed]

E. V. Browell, S. Ismail, S. T. Shipley, “Ultraviolet Measurements of O3 Profiles in Regions of Spatially Inhomogeneous Aerosols,” Appl. Opt. 24, 2827 (1985).
[CrossRef] [PubMed]

R. E. Warren, “Effect of Pulse-Pair Correlation on Differential Absorption Lidar,” Appl. Opt. 24, 3472 (1985).
[CrossRef] [PubMed]

Y. Sasano, E. V. Browell, S. Ismail, “Error Caused by Using a Constant Extinction/Backscattering Ratio in the Lidar Solution,” Appl. Opt. 24, 3929 (1985).
[CrossRef] [PubMed]

W. B. Grant, “He–Ne and cw CO2 Laser Long-Path Systems for Gas Detection,” Appl. Opt. 25, 709 (1986).
[CrossRef] [PubMed]

M. J. T. Milton, P. T. Woods, “Pulse Averaging Methods for a Laser Remote Monitoring System Using Atmospheric Back-scatter,” Appl. Opt. 26, 2598 (1987).
[CrossRef] [PubMed]

W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL Measurements of Water Vapor,” Appl. Opt. 26, 3033 (1987).
[CrossRef] [PubMed]

P. Vujkovic Cvijin, D. Ignjatijevic, I. Mendas, M. Sreckovic, L. Pantani, P. I. Pippi, “Reflectance Spectra of Terrestrial Surface Materials at CO2 Laser Wavelengths: Effects on DIAL and Geological Remote Sensing,” Appl. Opt. 26, 4323 (1987).
[CrossRef]

Appl. Phys. Lett. (1)

D. K. Killinger, N. Menyuk, “Effect of Turbulence-Induced Correlation on Laser Remote Sensing Errors,” Appl. Phys. Lett. 38, 968 (1981).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

J. Clim. Appl. Meterol. (1)

B. J. Rye, “Power Ratio Estimation in Incoherent Backscatter Lidar: Heterodyne Receiver with Square Law Detection,” J. Clim. Appl. Meterol. 22, 1899 (1983).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Science (1)

D. K. Killinger, N. Menyuk, “Laser Remote Sensing of the Atmosphere,” Science 235, 37 (1987).
[CrossRef] [PubMed]

Other (5)

W. Staehr, W. Lahmann, C. Weitkamp, “Range-Resolved Differential Absorption Lidar: Optimization of Range and Sensitivity,” Appl. Opt.24, 1950 (1985) and private communication.
[CrossRef] [PubMed]

R. M. Hardesty, “Measurement of Range-Resolved Water Vapor Concentration by Coherent CO2 Differential Absorption Lidar,” NOAA Tech. Memo WPL-118, Boulder, CO (Mar.1984).

W. B. Grant, “A Critical Evaluation of Water Vapor Absorption Coefficient Measurements in the 840 to 1100 cm−1 Spectral Region,” JPL Tech. Report 87–34 (15Dec.1987).

M. H. DeGroot, Probability and Statistics (Addison-Wesley, Reading, MA, 1975), p. 185.

W. B. Grant, “Laser Remote Sensing Techniques,” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. W. Solarz, J. A. Paisner, Eds. (Marcel Dekker, New York, 1987), p. 565.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Lidar signals from one pair of pulses for the lasers tuned to the 10P(14)/10P(20) laser line pair plotted on a linear scale. The peak on the left of each lidar signal is due to RFI from the laser. The transmitters and receiver are converged in the 0.3–1.5-km region, in which a number of peaks due to speckle are evident.

Fig. 2
Fig. 2

Average squared lidar signals for 7614 pulse pairs taken as described in Fig. 1 plotted on a logarithmic scale. The extra feature on the left-hand trace from 1.5 to 2.5 km is also due to RFI.

Fig. 3
Fig. 3

75-m derivitaves of the logarithm of the ratio of the signals shown in Fig. 2.

Fig. 4
Fig. 4

Standard deviation for the data used in Fig. 2 taken 16 at a time.

Fig. 5
Fig. 5

Standard deviation of the ratio σr vs N, the number of lidar pulse pairs averaged at a time, for the data shown in Fig. 2. The data were smoothed over 40 m and represent range-resolved calculations.

Fig. 6
Fig. 6

Standard deviation of the ratio for 6789 pulse pairs taken 3 Mar. 1987 with the lasers tuned to the 10P(10) and 10P(18) lines. The data were smoothed over 270 m, and the ratios were normalized at a 2.2-km range; thus these data represent column-content calculations.

Fig. 7
Fig. 7

Standard deviation of the ratio vs N for 5423 sets of data where the 10R(18)/10R(18) laser line pair was used for the first half of the data set and the 10R(12)/10R(18) pair for the second half.

Metrics