Abstract

The development of a nonintrusive spectroscopic technique is reported which permits simultaneous spatially resolved measurements of two velocity components and pressure in a plane of a compressible gaseous flow field. The technique is based on the detection of fluorescence from an absorption line excited with a narrow-bandwidth laser. Doppler shift and pressure broadening of the line are exploited to extract velocity and pressure information, respectively. The fluorescence is detected at a 90° angle with an image-intensified 100 × 100 element photodiode-array camera which is interfaced with a laboratory computer. Results of the implementation in a Mach 1.5 underexpanded supersonic jet are presented.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Bechtel, C. J. Dasch, R. E. Teets, “Combustion Research with Lasers,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, Orlando, FL, 1984).
  2. J. C. McDaniel, “Quantitative Measurement of Density and Velocity in Compressible Flows using Laser-Induced Iodine Fluorescence,” AIAA-83-0049, AIAA Twenty-first Aerospace Sciences Meeting, Reno, NV (Jan.1983).
  3. G. W. Faris, R. L. Byer, “Quantitative Optical Tomographic Imaging of a Supersonic Jet,” Opt. Lett. 11, 413 (1986).
    [CrossRef] [PubMed]
  4. B. Yip, M. B. Long, “Instantaneous Planar Measurements of the Complete Three-Dimensional Scalar Gradient in a Turbulent Jet,” Opt. Lett. 11, (1986).
    [CrossRef] [PubMed]
  5. M. B. Long, P. S. Levin, D. C. Fourguette, “Simultaneous Two-Dimensional Mapping of Species Concentration and Temperature in Turbulent Flows,” Opt. Lett. 10, 267 (1985).
    [CrossRef] [PubMed]
  6. J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous Temperature Field Measurements using Planar Laser-Induced Fluorescence,” Opt. Lett. 10, 439 (1985).
    [CrossRef] [PubMed]
  7. M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative Imaging of Temperature Fields in Air using Planar Laser-Induced Fluorescence of O2,” Opt. Lett. 12, 75 (1987).
    [CrossRef] [PubMed]
  8. W. H. Stevenson, “Laser Doppler Velocimetry: a Status Report,” Proc., IEEE 70, 652 (1982).
    [CrossRef]
  9. R. J. Adrian, C.-S. Yao, “Pulsed Laser Technique Application to Liquid and Gaseous Flows and the Scattering Power of Seed Materials,” Appl. Opt. 24, 44 (1985).
    [CrossRef] [PubMed]
  10. R. Meynart, “Instantaneous Velocity Field Measurements in Unsteady Gas Flows by Speckle Velocimetry,” Appl. Opt. 22, 535 (1983).
    [CrossRef] [PubMed]
  11. S. H. Collicott, L. Hesselink, “Anamorphic Optical Processing of Multiple-Exposure Speckle Photographs,” Opt. Lett. 11, 410 (1986).
    [CrossRef] [PubMed]
  12. T. P. Chang, N. A. Wilson, G. B. Tatterson, “Application of Image Processing to the Analysis of Three-Dimensional Flow Fields,” Opt. Eng. 23, 283 (1984).
    [CrossRef]
  13. K. A. Marko, L. Rimai, “Video Recording and Quantitative Analysis of Seed Particle Track Images in Unsteady Flows,” Appl. Opt. 24, 3666 (1985).
    [CrossRef] [PubMed]
  14. B. Hiller, R. A. Booman, C. Hassa, R. K. Hanson, “Velocity Visualization in Gas Flows using Laser-Induced Phosphorescence of Biacetyl,” Rev. Sci. Instrum. 55, 1964 (1984).
    [CrossRef]
  15. C. J. Dasch, J. A. Sell, “Velocimetry in Laminar and Turbulent Flows Using the Photothermal Deflection Effect with a Transient Grating,” Opt. Lett. 11, 603 (1986).
    [CrossRef] [PubMed]
  16. Y.-X. Nie, K. Hane, R. Gupta, “Measurements of Very Low Gas Velocities by Photothermal Deflection Spectroscopy,” Appl. Opt. 25, 3247 (1986).
    [CrossRef] [PubMed]
  17. J. A. Sell, R. J. Cattolica, “Linear Imaging of Gas Velocity using the Photothermal Deflection Effect,” Appl. Opt. 25, 1420 (1986).
    [CrossRef] [PubMed]
  18. R. M. Measures, “Selective Excitation Spectroscopy and Some Possible Applications,” J. Appl. Phys. 39, 5232 (1968).
    [CrossRef]
  19. H. Moosmuller, G. C. Herring, C.-Y. She, “Two-Component Velocity Measurements in a Supersonic Nitrogen Jet with Spatially Resolved Inverse Raman Spectroscopy,” Opt. Lett. 9, 536 (1984).
    [CrossRef] [PubMed]
  20. C. Y. She, “Proposal for Measuring Molecular Velocity Vector with Single-Pulse Coherent Raman Spectroscopy,” Appl. Phys. B 32, 49 (1983).
    [CrossRef]
  21. E. K. Gustafson, J. C. McDaniel, R. L. Byer, “CARS Measurement of Velocity in a Supersonic Jet,” IEEE J. Quantum Electron. QE-17, 2258 (1981).
    [CrossRef]
  22. M. Zimmermann, R. B. Miles, “Hypersonic-Helium-Flow-Field Measurements with the Resonant Doppler Velocimeter,” Appl. Phys. Lett. 37, 885 (1980).
    [CrossRef]
  23. J. C. McDaniel, B. Hiller, R. K. Hanson, “Simultaneous Multiple-Point Velocity Measurements using Laser-Induced Iodine Fluorescence,” Opt. Lett. 8, 51 (1983).
    [CrossRef] [PubMed]
  24. B. Hiller, R. K. Hanson, “Two-Frequency Laser-Induced Fluorescence Technique for Rapid Velocity-Field Measurements in Gas Flows,” Opt. Lett. 10, 206 (1985).
    [CrossRef] [PubMed]
  25. S. Cheng, M. Zimmerman, R. B. Miles, “Separation of Time-Averaged Turbulence Components by Laser-Induced Fluorescence,” Phys. Fluids 26, 874 (1983).
    [CrossRef]
  26. R. J. Exton, M. E. Hillard, “Raman Doppler Velocimetry: a Unified Approach for Measuring Molecular Flow Velocity, Temperature, and Pressure,” Appl. Opt. 25, 14 (1986).
    [CrossRef] [PubMed]
  27. J. C. McDaniel, “Nonintrusive Pressure Measurements with Laser-Induced Iodine Fluorescence,” in Combustion Diagnostics by Nonintrusive Methods, J. A. Roux, T. D. McCay, Eds., Progress in Astronautics and Aeronautics, Vol. 92 (1984).
  28. B. Hiller, L. M. Cohen, R. K. Hanson, “Simultaneous Measurements of Velocity and Pressure Fields in Subsonic and Supersonic Flows through Image-Intensified Detection of Laser-Induced Fluorescence,” AIAA-86-0161, Twenty-fourth Aerospace Sciences Meeting, Reno, NV (1986).
  29. B. Hiller, R. K. Hanson, “Properties of the Iodine Molecule Relevant to Absorption/Fluorescence Experiments in Gas Flows,” in preparation, High Temperature Gasdynamics Laboratory, Stanford U. (1987).
  30. B. Hiller, P. H. Paul, R. K. Hanson, “Image-Intensified Photodiode Array as a Fluorescence Detector in cw-Laser Experiments,” in preparation, High Temperature Gasdynamics Laboratory, Stanford U. (1987).
  31. M. Aldén, P. Grafström, H. Lundberg, S. Svanberg, “Spatially Resolved Temperature Measurements in a Flame using Laser-Excited Two-Line Atomic Fluorescence and Diode-Array Detection,” Opt. Lett. 8, 241 (1983).
    [CrossRef] [PubMed]
  32. A. Y. Chang, E. C. Rea, R. K. Hanson, “Temperature Measurements in Shock Tubes using a Laser Absorption Technique,” Appl. Opt. 26, 885 (1987).
    [CrossRef] [PubMed]
  33. D. G. Fletcher, J. C. McDaniel, “Temperature Measurement in a Compressible Flow Field using Laser-Induced Iodine Fluorescence,” Opt. Lett. 12, 16 (1987).
    [CrossRef] [PubMed]
  34. I. I. Sobelman, L. A. Vainshtein, E. A. Yukov, “Excitation of Atoms and Broadening of Spectral Lines (Springer-Verlag, Berlin, 1981).
    [CrossRef]
  35. B. Hiller, “Combined Planar Measurements of Velocity and Pressure Fields in Compressible Gas Flows using Laser-Induced Iodine Fluorescence,” Dissertation, Topical Report T-256, High Temperature Gasdynamics Laboratory, Department of Mechanical Engineering, Stanford U. (1986).
  36. S. M. Dash, D. E. Wolf, J. M. Seiner, “Analysis of Turbulent Underexpanded Jets,” AIAA J. 23, 505 669 (1985).
  37. E. S. Love, C. E. Grigsby, L. P. Lee, M. J. Woodling, “Experimental and Theoretical Studies of Axisymmetric Free Jets,” NASA Tech. Rep. R-6 (1959).

1987 (3)

1986 (7)

1985 (6)

1984 (3)

H. Moosmuller, G. C. Herring, C.-Y. She, “Two-Component Velocity Measurements in a Supersonic Nitrogen Jet with Spatially Resolved Inverse Raman Spectroscopy,” Opt. Lett. 9, 536 (1984).
[CrossRef] [PubMed]

B. Hiller, R. A. Booman, C. Hassa, R. K. Hanson, “Velocity Visualization in Gas Flows using Laser-Induced Phosphorescence of Biacetyl,” Rev. Sci. Instrum. 55, 1964 (1984).
[CrossRef]

T. P. Chang, N. A. Wilson, G. B. Tatterson, “Application of Image Processing to the Analysis of Three-Dimensional Flow Fields,” Opt. Eng. 23, 283 (1984).
[CrossRef]

1983 (5)

1982 (1)

W. H. Stevenson, “Laser Doppler Velocimetry: a Status Report,” Proc., IEEE 70, 652 (1982).
[CrossRef]

1981 (1)

E. K. Gustafson, J. C. McDaniel, R. L. Byer, “CARS Measurement of Velocity in a Supersonic Jet,” IEEE J. Quantum Electron. QE-17, 2258 (1981).
[CrossRef]

1980 (1)

M. Zimmermann, R. B. Miles, “Hypersonic-Helium-Flow-Field Measurements with the Resonant Doppler Velocimeter,” Appl. Phys. Lett. 37, 885 (1980).
[CrossRef]

1968 (1)

R. M. Measures, “Selective Excitation Spectroscopy and Some Possible Applications,” J. Appl. Phys. 39, 5232 (1968).
[CrossRef]

Adrian, R. J.

Aldén, M.

Bechtel, J. H.

J. H. Bechtel, C. J. Dasch, R. E. Teets, “Combustion Research with Lasers,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, Orlando, FL, 1984).

Booman, R. A.

B. Hiller, R. A. Booman, C. Hassa, R. K. Hanson, “Velocity Visualization in Gas Flows using Laser-Induced Phosphorescence of Biacetyl,” Rev. Sci. Instrum. 55, 1964 (1984).
[CrossRef]

Byer, R. L.

G. W. Faris, R. L. Byer, “Quantitative Optical Tomographic Imaging of a Supersonic Jet,” Opt. Lett. 11, 413 (1986).
[CrossRef] [PubMed]

E. K. Gustafson, J. C. McDaniel, R. L. Byer, “CARS Measurement of Velocity in a Supersonic Jet,” IEEE J. Quantum Electron. QE-17, 2258 (1981).
[CrossRef]

Cattolica, R. J.

Chang, A. Y.

Chang, T. P.

T. P. Chang, N. A. Wilson, G. B. Tatterson, “Application of Image Processing to the Analysis of Three-Dimensional Flow Fields,” Opt. Eng. 23, 283 (1984).
[CrossRef]

Cheng, S.

S. Cheng, M. Zimmerman, R. B. Miles, “Separation of Time-Averaged Turbulence Components by Laser-Induced Fluorescence,” Phys. Fluids 26, 874 (1983).
[CrossRef]

Cohen, L. M.

B. Hiller, L. M. Cohen, R. K. Hanson, “Simultaneous Measurements of Velocity and Pressure Fields in Subsonic and Supersonic Flows through Image-Intensified Detection of Laser-Induced Fluorescence,” AIAA-86-0161, Twenty-fourth Aerospace Sciences Meeting, Reno, NV (1986).

Collicott, S. H.

Dasch, C. J.

C. J. Dasch, J. A. Sell, “Velocimetry in Laminar and Turbulent Flows Using the Photothermal Deflection Effect with a Transient Grating,” Opt. Lett. 11, 603 (1986).
[CrossRef] [PubMed]

J. H. Bechtel, C. J. Dasch, R. E. Teets, “Combustion Research with Lasers,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, Orlando, FL, 1984).

Dash, S. M.

S. M. Dash, D. E. Wolf, J. M. Seiner, “Analysis of Turbulent Underexpanded Jets,” AIAA J. 23, 505 669 (1985).

Exton, R. J.

Faris, G. W.

Fletcher, D. G.

Fourguette, D. C.

Grafström, P.

Grigsby, C. E.

E. S. Love, C. E. Grigsby, L. P. Lee, M. J. Woodling, “Experimental and Theoretical Studies of Axisymmetric Free Jets,” NASA Tech. Rep. R-6 (1959).

Gupta, R.

Gustafson, E. K.

E. K. Gustafson, J. C. McDaniel, R. L. Byer, “CARS Measurement of Velocity in a Supersonic Jet,” IEEE J. Quantum Electron. QE-17, 2258 (1981).
[CrossRef]

Hane, K.

Hanson, R. K.

M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative Imaging of Temperature Fields in Air using Planar Laser-Induced Fluorescence of O2,” Opt. Lett. 12, 75 (1987).
[CrossRef] [PubMed]

A. Y. Chang, E. C. Rea, R. K. Hanson, “Temperature Measurements in Shock Tubes using a Laser Absorption Technique,” Appl. Opt. 26, 885 (1987).
[CrossRef] [PubMed]

J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous Temperature Field Measurements using Planar Laser-Induced Fluorescence,” Opt. Lett. 10, 439 (1985).
[CrossRef] [PubMed]

B. Hiller, R. K. Hanson, “Two-Frequency Laser-Induced Fluorescence Technique for Rapid Velocity-Field Measurements in Gas Flows,” Opt. Lett. 10, 206 (1985).
[CrossRef] [PubMed]

B. Hiller, R. A. Booman, C. Hassa, R. K. Hanson, “Velocity Visualization in Gas Flows using Laser-Induced Phosphorescence of Biacetyl,” Rev. Sci. Instrum. 55, 1964 (1984).
[CrossRef]

J. C. McDaniel, B. Hiller, R. K. Hanson, “Simultaneous Multiple-Point Velocity Measurements using Laser-Induced Iodine Fluorescence,” Opt. Lett. 8, 51 (1983).
[CrossRef] [PubMed]

B. Hiller, L. M. Cohen, R. K. Hanson, “Simultaneous Measurements of Velocity and Pressure Fields in Subsonic and Supersonic Flows through Image-Intensified Detection of Laser-Induced Fluorescence,” AIAA-86-0161, Twenty-fourth Aerospace Sciences Meeting, Reno, NV (1986).

B. Hiller, R. K. Hanson, “Properties of the Iodine Molecule Relevant to Absorption/Fluorescence Experiments in Gas Flows,” in preparation, High Temperature Gasdynamics Laboratory, Stanford U. (1987).

B. Hiller, P. H. Paul, R. K. Hanson, “Image-Intensified Photodiode Array as a Fluorescence Detector in cw-Laser Experiments,” in preparation, High Temperature Gasdynamics Laboratory, Stanford U. (1987).

Hassa, C.

B. Hiller, R. A. Booman, C. Hassa, R. K. Hanson, “Velocity Visualization in Gas Flows using Laser-Induced Phosphorescence of Biacetyl,” Rev. Sci. Instrum. 55, 1964 (1984).
[CrossRef]

Herring, G. C.

Hesselink, L.

Hillard, M. E.

Hiller, B.

B. Hiller, R. K. Hanson, “Two-Frequency Laser-Induced Fluorescence Technique for Rapid Velocity-Field Measurements in Gas Flows,” Opt. Lett. 10, 206 (1985).
[CrossRef] [PubMed]

B. Hiller, R. A. Booman, C. Hassa, R. K. Hanson, “Velocity Visualization in Gas Flows using Laser-Induced Phosphorescence of Biacetyl,” Rev. Sci. Instrum. 55, 1964 (1984).
[CrossRef]

J. C. McDaniel, B. Hiller, R. K. Hanson, “Simultaneous Multiple-Point Velocity Measurements using Laser-Induced Iodine Fluorescence,” Opt. Lett. 8, 51 (1983).
[CrossRef] [PubMed]

B. Hiller, P. H. Paul, R. K. Hanson, “Image-Intensified Photodiode Array as a Fluorescence Detector in cw-Laser Experiments,” in preparation, High Temperature Gasdynamics Laboratory, Stanford U. (1987).

B. Hiller, R. K. Hanson, “Properties of the Iodine Molecule Relevant to Absorption/Fluorescence Experiments in Gas Flows,” in preparation, High Temperature Gasdynamics Laboratory, Stanford U. (1987).

B. Hiller, L. M. Cohen, R. K. Hanson, “Simultaneous Measurements of Velocity and Pressure Fields in Subsonic and Supersonic Flows through Image-Intensified Detection of Laser-Induced Fluorescence,” AIAA-86-0161, Twenty-fourth Aerospace Sciences Meeting, Reno, NV (1986).

B. Hiller, “Combined Planar Measurements of Velocity and Pressure Fields in Compressible Gas Flows using Laser-Induced Iodine Fluorescence,” Dissertation, Topical Report T-256, High Temperature Gasdynamics Laboratory, Department of Mechanical Engineering, Stanford U. (1986).

Kychakoff, G.

Lee, L. P.

E. S. Love, C. E. Grigsby, L. P. Lee, M. J. Woodling, “Experimental and Theoretical Studies of Axisymmetric Free Jets,” NASA Tech. Rep. R-6 (1959).

Lee, M. P.

Levin, P. S.

Long, M. B.

B. Yip, M. B. Long, “Instantaneous Planar Measurements of the Complete Three-Dimensional Scalar Gradient in a Turbulent Jet,” Opt. Lett. 11, (1986).
[CrossRef] [PubMed]

M. B. Long, P. S. Levin, D. C. Fourguette, “Simultaneous Two-Dimensional Mapping of Species Concentration and Temperature in Turbulent Flows,” Opt. Lett. 10, 267 (1985).
[CrossRef] [PubMed]

Love, E. S.

E. S. Love, C. E. Grigsby, L. P. Lee, M. J. Woodling, “Experimental and Theoretical Studies of Axisymmetric Free Jets,” NASA Tech. Rep. R-6 (1959).

Lundberg, H.

Marko, K. A.

McDaniel, J. C.

D. G. Fletcher, J. C. McDaniel, “Temperature Measurement in a Compressible Flow Field using Laser-Induced Iodine Fluorescence,” Opt. Lett. 12, 16 (1987).
[CrossRef] [PubMed]

J. C. McDaniel, B. Hiller, R. K. Hanson, “Simultaneous Multiple-Point Velocity Measurements using Laser-Induced Iodine Fluorescence,” Opt. Lett. 8, 51 (1983).
[CrossRef] [PubMed]

E. K. Gustafson, J. C. McDaniel, R. L. Byer, “CARS Measurement of Velocity in a Supersonic Jet,” IEEE J. Quantum Electron. QE-17, 2258 (1981).
[CrossRef]

J. C. McDaniel, “Nonintrusive Pressure Measurements with Laser-Induced Iodine Fluorescence,” in Combustion Diagnostics by Nonintrusive Methods, J. A. Roux, T. D. McCay, Eds., Progress in Astronautics and Aeronautics, Vol. 92 (1984).

J. C. McDaniel, “Quantitative Measurement of Density and Velocity in Compressible Flows using Laser-Induced Iodine Fluorescence,” AIAA-83-0049, AIAA Twenty-first Aerospace Sciences Meeting, Reno, NV (Jan.1983).

Measures, R. M.

R. M. Measures, “Selective Excitation Spectroscopy and Some Possible Applications,” J. Appl. Phys. 39, 5232 (1968).
[CrossRef]

Meynart, R.

Miles, R. B.

S. Cheng, M. Zimmerman, R. B. Miles, “Separation of Time-Averaged Turbulence Components by Laser-Induced Fluorescence,” Phys. Fluids 26, 874 (1983).
[CrossRef]

M. Zimmermann, R. B. Miles, “Hypersonic-Helium-Flow-Field Measurements with the Resonant Doppler Velocimeter,” Appl. Phys. Lett. 37, 885 (1980).
[CrossRef]

Moosmuller, H.

Nie, Y.-X.

Paul, P. H.

M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative Imaging of Temperature Fields in Air using Planar Laser-Induced Fluorescence of O2,” Opt. Lett. 12, 75 (1987).
[CrossRef] [PubMed]

B. Hiller, P. H. Paul, R. K. Hanson, “Image-Intensified Photodiode Array as a Fluorescence Detector in cw-Laser Experiments,” in preparation, High Temperature Gasdynamics Laboratory, Stanford U. (1987).

Rea, E. C.

Rimai, L.

Seiner, J. M.

S. M. Dash, D. E. Wolf, J. M. Seiner, “Analysis of Turbulent Underexpanded Jets,” AIAA J. 23, 505 669 (1985).

Seitzman, J. M.

Sell, J. A.

She, C. Y.

C. Y. She, “Proposal for Measuring Molecular Velocity Vector with Single-Pulse Coherent Raman Spectroscopy,” Appl. Phys. B 32, 49 (1983).
[CrossRef]

She, C.-Y.

Sobelman, I. I.

I. I. Sobelman, L. A. Vainshtein, E. A. Yukov, “Excitation of Atoms and Broadening of Spectral Lines (Springer-Verlag, Berlin, 1981).
[CrossRef]

Stevenson, W. H.

W. H. Stevenson, “Laser Doppler Velocimetry: a Status Report,” Proc., IEEE 70, 652 (1982).
[CrossRef]

Svanberg, S.

Tatterson, G. B.

T. P. Chang, N. A. Wilson, G. B. Tatterson, “Application of Image Processing to the Analysis of Three-Dimensional Flow Fields,” Opt. Eng. 23, 283 (1984).
[CrossRef]

Teets, R. E.

J. H. Bechtel, C. J. Dasch, R. E. Teets, “Combustion Research with Lasers,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, Orlando, FL, 1984).

Vainshtein, L. A.

I. I. Sobelman, L. A. Vainshtein, E. A. Yukov, “Excitation of Atoms and Broadening of Spectral Lines (Springer-Verlag, Berlin, 1981).
[CrossRef]

Wilson, N. A.

T. P. Chang, N. A. Wilson, G. B. Tatterson, “Application of Image Processing to the Analysis of Three-Dimensional Flow Fields,” Opt. Eng. 23, 283 (1984).
[CrossRef]

Wolf, D. E.

S. M. Dash, D. E. Wolf, J. M. Seiner, “Analysis of Turbulent Underexpanded Jets,” AIAA J. 23, 505 669 (1985).

Woodling, M. J.

E. S. Love, C. E. Grigsby, L. P. Lee, M. J. Woodling, “Experimental and Theoretical Studies of Axisymmetric Free Jets,” NASA Tech. Rep. R-6 (1959).

Yao, C.-S.

Yip, B.

B. Yip, M. B. Long, “Instantaneous Planar Measurements of the Complete Three-Dimensional Scalar Gradient in a Turbulent Jet,” Opt. Lett. 11, (1986).
[CrossRef] [PubMed]

Yukov, E. A.

I. I. Sobelman, L. A. Vainshtein, E. A. Yukov, “Excitation of Atoms and Broadening of Spectral Lines (Springer-Verlag, Berlin, 1981).
[CrossRef]

Zimmerman, M.

S. Cheng, M. Zimmerman, R. B. Miles, “Separation of Time-Averaged Turbulence Components by Laser-Induced Fluorescence,” Phys. Fluids 26, 874 (1983).
[CrossRef]

Zimmermann, M.

M. Zimmermann, R. B. Miles, “Hypersonic-Helium-Flow-Field Measurements with the Resonant Doppler Velocimeter,” Appl. Phys. Lett. 37, 885 (1980).
[CrossRef]

AIAA J. (1)

S. M. Dash, D. E. Wolf, J. M. Seiner, “Analysis of Turbulent Underexpanded Jets,” AIAA J. 23, 505 669 (1985).

Appl. Opt. (7)

Appl. Phys. B (1)

C. Y. She, “Proposal for Measuring Molecular Velocity Vector with Single-Pulse Coherent Raman Spectroscopy,” Appl. Phys. B 32, 49 (1983).
[CrossRef]

Appl. Phys. Lett. (1)

M. Zimmermann, R. B. Miles, “Hypersonic-Helium-Flow-Field Measurements with the Resonant Doppler Velocimeter,” Appl. Phys. Lett. 37, 885 (1980).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. K. Gustafson, J. C. McDaniel, R. L. Byer, “CARS Measurement of Velocity in a Supersonic Jet,” IEEE J. Quantum Electron. QE-17, 2258 (1981).
[CrossRef]

J. Appl. Phys. (1)

R. M. Measures, “Selective Excitation Spectroscopy and Some Possible Applications,” J. Appl. Phys. 39, 5232 (1968).
[CrossRef]

Opt. Eng. (1)

T. P. Chang, N. A. Wilson, G. B. Tatterson, “Application of Image Processing to the Analysis of Three-Dimensional Flow Fields,” Opt. Eng. 23, 283 (1984).
[CrossRef]

Opt. Lett. (12)

C. J. Dasch, J. A. Sell, “Velocimetry in Laminar and Turbulent Flows Using the Photothermal Deflection Effect with a Transient Grating,” Opt. Lett. 11, 603 (1986).
[CrossRef] [PubMed]

H. Moosmuller, G. C. Herring, C.-Y. She, “Two-Component Velocity Measurements in a Supersonic Nitrogen Jet with Spatially Resolved Inverse Raman Spectroscopy,” Opt. Lett. 9, 536 (1984).
[CrossRef] [PubMed]

S. H. Collicott, L. Hesselink, “Anamorphic Optical Processing of Multiple-Exposure Speckle Photographs,” Opt. Lett. 11, 410 (1986).
[CrossRef] [PubMed]

G. W. Faris, R. L. Byer, “Quantitative Optical Tomographic Imaging of a Supersonic Jet,” Opt. Lett. 11, 413 (1986).
[CrossRef] [PubMed]

B. Yip, M. B. Long, “Instantaneous Planar Measurements of the Complete Three-Dimensional Scalar Gradient in a Turbulent Jet,” Opt. Lett. 11, (1986).
[CrossRef] [PubMed]

M. B. Long, P. S. Levin, D. C. Fourguette, “Simultaneous Two-Dimensional Mapping of Species Concentration and Temperature in Turbulent Flows,” Opt. Lett. 10, 267 (1985).
[CrossRef] [PubMed]

J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous Temperature Field Measurements using Planar Laser-Induced Fluorescence,” Opt. Lett. 10, 439 (1985).
[CrossRef] [PubMed]

M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative Imaging of Temperature Fields in Air using Planar Laser-Induced Fluorescence of O2,” Opt. Lett. 12, 75 (1987).
[CrossRef] [PubMed]

D. G. Fletcher, J. C. McDaniel, “Temperature Measurement in a Compressible Flow Field using Laser-Induced Iodine Fluorescence,” Opt. Lett. 12, 16 (1987).
[CrossRef] [PubMed]

J. C. McDaniel, B. Hiller, R. K. Hanson, “Simultaneous Multiple-Point Velocity Measurements using Laser-Induced Iodine Fluorescence,” Opt. Lett. 8, 51 (1983).
[CrossRef] [PubMed]

B. Hiller, R. K. Hanson, “Two-Frequency Laser-Induced Fluorescence Technique for Rapid Velocity-Field Measurements in Gas Flows,” Opt. Lett. 10, 206 (1985).
[CrossRef] [PubMed]

M. Aldén, P. Grafström, H. Lundberg, S. Svanberg, “Spatially Resolved Temperature Measurements in a Flame using Laser-Excited Two-Line Atomic Fluorescence and Diode-Array Detection,” Opt. Lett. 8, 241 (1983).
[CrossRef] [PubMed]

Phys. Fluids (1)

S. Cheng, M. Zimmerman, R. B. Miles, “Separation of Time-Averaged Turbulence Components by Laser-Induced Fluorescence,” Phys. Fluids 26, 874 (1983).
[CrossRef]

Proc., IEEE (1)

W. H. Stevenson, “Laser Doppler Velocimetry: a Status Report,” Proc., IEEE 70, 652 (1982).
[CrossRef]

Rev. Sci. Instrum. (1)

B. Hiller, R. A. Booman, C. Hassa, R. K. Hanson, “Velocity Visualization in Gas Flows using Laser-Induced Phosphorescence of Biacetyl,” Rev. Sci. Instrum. 55, 1964 (1984).
[CrossRef]

Other (9)

J. H. Bechtel, C. J. Dasch, R. E. Teets, “Combustion Research with Lasers,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, Orlando, FL, 1984).

J. C. McDaniel, “Quantitative Measurement of Density and Velocity in Compressible Flows using Laser-Induced Iodine Fluorescence,” AIAA-83-0049, AIAA Twenty-first Aerospace Sciences Meeting, Reno, NV (Jan.1983).

J. C. McDaniel, “Nonintrusive Pressure Measurements with Laser-Induced Iodine Fluorescence,” in Combustion Diagnostics by Nonintrusive Methods, J. A. Roux, T. D. McCay, Eds., Progress in Astronautics and Aeronautics, Vol. 92 (1984).

B. Hiller, L. M. Cohen, R. K. Hanson, “Simultaneous Measurements of Velocity and Pressure Fields in Subsonic and Supersonic Flows through Image-Intensified Detection of Laser-Induced Fluorescence,” AIAA-86-0161, Twenty-fourth Aerospace Sciences Meeting, Reno, NV (1986).

B. Hiller, R. K. Hanson, “Properties of the Iodine Molecule Relevant to Absorption/Fluorescence Experiments in Gas Flows,” in preparation, High Temperature Gasdynamics Laboratory, Stanford U. (1987).

B. Hiller, P. H. Paul, R. K. Hanson, “Image-Intensified Photodiode Array as a Fluorescence Detector in cw-Laser Experiments,” in preparation, High Temperature Gasdynamics Laboratory, Stanford U. (1987).

I. I. Sobelman, L. A. Vainshtein, E. A. Yukov, “Excitation of Atoms and Broadening of Spectral Lines (Springer-Verlag, Berlin, 1981).
[CrossRef]

B. Hiller, “Combined Planar Measurements of Velocity and Pressure Fields in Compressible Gas Flows using Laser-Induced Iodine Fluorescence,” Dissertation, Topical Report T-256, High Temperature Gasdynamics Laboratory, Department of Mechanical Engineering, Stanford U. (1986).

E. S. Love, C. E. Grigsby, L. P. Lee, M. J. Woodling, “Experimental and Theoretical Studies of Axisymmetric Free Jets,” NASA Tech. Rep. R-6 (1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Principal setup of measurement techniques based on planar laser-induced fluorescence.

Fig. 2
Fig. 2

Convention for velocity and position coordinates.

Fig. 3
Fig. 3

Optimal setup for tuned-frequency measurements of two velocity components. The measurement requires access from only one side and is independent of pressure shifts.

Fig. 4
Fig. 4

Fixed-frequency excitation of a Doppler-shifted absorption line using counterpropagating beams.

Fig. 5
Fig. 5

Two-frequency excitation using tuning to line center, which provides an indirect measurement of the slope. ΔνIC is the frequency shift provided by an intracavity etalon.

Fig. 6
Fig. 6

Conversion curve for the indirect slope measurement, relating the normalized line center value to the normalized slope.

Fig. 7
Fig. 7

Determination of pressure from the normalized line center value. The different curves encompass the static temperature variation in an underexpanded Mach 1.5 jet. The dashed line is used to infer static pressure from the measured normalized line center values gc/g0 [Eq. (26)].

Fig. 8
Fig. 8

Basic setup for laser excitation and fluorescence detection.

Fig. 9
Fig. 9

Optical and electronic setup showing beam diagnostics and camera and etalon control signals.

Fig. 10
Fig. 10

Flow diagram for the data reduction.

Fig. 11
Fig. 11

False determination of g0 with the linear assumption.

Fig. 12
Fig. 12

Doppler-shift error as result of a random signal error.

Fig. 13
Fig. 13

Width of the linear part for different linearity tolerances.

Fig. 14
Fig. 14

Vector display of selection of velocity data with a sketch of the flow field of an underexpanded supersonic round jet at Mach 1.5.

Fig. 15
Fig. 15

Cross section of acquired frames (directions 1 and 4) illustrating the data reduction process.

Fig. 16
Fig. 16

Measured distribution of the axial velocity.

Fig. 17
Fig. 17

Measured distribution of the radial velocity.

Fig. 18
Fig. 18

Measured distribution of the static pressure.

Fig. 19
Fig. 19

Measured distribution of the component of the vorticity vector normal to the plane of illumination.

Fig. 20
Fig. 20

Center line variation of Mach number and static pressure. [Pa is the ambient (background) pressure, 125 Torr in this experiment.]

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

N abs = I n abs V c B 12 c g ( ν , P , T ) Δ t
n abs = χ f pop n ,
S = N abs A 21 A 21 + Q 21 Ω 4 π η col R ,
Δ ν Dop = 1 2 π k · u ,
Δ ν Dop = u 0 λ .
Δ 1 = ( u 3 u 1 ) / λ ,
Δ 2 = ( u 2 u 3 ) / λ ,
u 3 = ( u 2 u 1 ) / 2 ,
u 1 = λ 2 [ Δ 2 ( 2 1 ) · Δ 1 ] ,
u 2 = λ 2 [ Δ 2 ( 2 + 1 ) + Δ 1 ] .
u 0 = λ · Δ ν 0 , Dop .
g 0 b g 0 a = slope · 2 Δ ν 0 , Dop .
slope = g / ν | ν 0 ,
u 0 = λ · g 0 b g 0 a 2 · ( g / ν ) ν 0 .
g = constant · S I ,
g | ν 0 = ( g 0 b + g 0 a ) / 2 ,
u 0 = λ g 0 b g 0 a g 0 b + g 0 a [ ( g / ν ) / g ] ν 0 1 .
u 0 = λ ( S / I ) | 0 b ( S / I ) | 0 a ( S / I ) | 0 b + ( S / I ) | 0 a [ ( g / ν ) / g ] ν 0 1 ,
u 0 = λ ( S f / S s ) | 0 b ( S f / S s ) | 0 a ( S f / S s ) | 0 b + ( S f / S s ) | 0 a [ ( g / ν ) / g ] ν 0 1 .
u 2 = λ g 2 g 0 g 0 [ ( g / ν / g ] ν 0 1 .
g 3 g 0 = ( g 2 g 1 ) / 2 .
u 2 = λ g 2 g 3 + ( g 2 g 1 ) / 2 g 3 ( g 2 g 1 ) / 2 [ ( g / ν ) / g ] ν 0 1 ,
u 1 = λ g 1 g 3 + ( g 2 g 1 ) / 2 g 3 ( g 2 g 1 ) / 2 [ ( g / ν ) / g ] ν 0 1 ,
u 3 = u rad = λ g 2 g 1 2 g 3 g 2 + g 1 [ ( g / ν ) / g ] ν 0 1 .
u ax = 1 2 ( u 1 + u 2 ) .
g c g 0 = g 4 g 3 ( g 2 g 1 ) / 2 ,
g / ν g | max . slope = 3 Δ ν h T P
g / ν g | max . slope = 8 ln 2 Δ ν i 1 T .
g 0 = g 3 r 1 2 ( g 2 g 1 ) ; r = f ( g 1 , g 2 , g 3 , g 4 ) .
δ ν δ g = 1 g / ν .
g ˜ δ g g
g ˜ = 1 SNR | ν 0 = 2 SNR max .
g / ν g 2 FWHM .
δ u = λ 2 SNR FWHM 2 .
δ u ( m / s ) = λ ( nm ) · FWHM ( GHz ) λ ( nm ) SNR .
δ u ( m / s ) = λ ( nm ) · FWHM ( GHz ) N / 2 · SNR .

Metrics