Abstract

Absorption and scattering losses of visible radiation in nematic liquid crystals (LCs) were measured by an improved transmission technique. The absorption loss of the E-7 LC mixture was found to be ~1 order of magnitude larger than the scattering in the isotropic state. On the contrary, light scattering surpasses absorption by ~2 orders in the nematic state. Wavelength-dependent absorption and scattering losses of two LCs, E-7 and MBBA, were investigated at some laser wavelengths. Results indicate that the absorption tail of LCs decreases with wavelength as λ−2 and scattering as λ−4 as expected by theory.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a general discussion, see L. M. Blinov, Electro-optical and magneto-optical properties of liquid crystals (Wiley, New York, 1983).
  2. S. D. Durbin, S. M. Arakelian, Y. R. Shen, “Optical Field-Induced Birefringence and Freedericksz Transition in a Nematic Liquid Crystal,” Phys. Rev. Lett. 47, 1411 (1981).
    [Crossref]
  3. I. C. Khoo, “Optically Induced Molecular Reorientation and Third-Order Nonlinear Optical Processes in Nematic Liquid Crystals,” Phys. Rev. A 23, 2077 (1981); Phys. Rev. A 25, 1636 (1982).
    [Crossref]
  4. H. Hsiung, “Transient Laser-Induced Molecular Reorientation and Laser Heating in a Nematic Liquid Crystal,” L. P. Shi, Y. R. Shen, Phys. Rev. A 30, 1453 (1984).
    [Crossref]
  5. A. M. Lackner, J. D. Margerum, C. I. VanAst, “Near Ultraviolet Photostability of Liquid Crystal Mixtures,” Mol. Cryst. Liq. Cryst. 141, 289 (1986).
    [Crossref]
  6. P. G. deGennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974), Chaps. 2 & 3.
  7. A. Saupe, “Ultraviolet, Infrared and Magnetic Resonance Spectroscopy on Liquid Crystals,” Mol. Cryst. Liq. Cryst. 16, 87 (1972).
    [Crossref]
  8. E. M. Aver’yanov, V. M. Muratov, V. G. Rumyantsev, V. A. Churkina, “Splitting of Polarization Absorption Bands with a Complex Vibron Structure in the Spectra of Impurity Liquid Crystals,” Sov. Phys. JETP 63, 57 (1986).
  9. F. D. Saeva, G. A. Reynolds, “Aggregation Behavior of a Thermotropic Discotic Bi-4H-Pyran Derivative in Solution,” Mol. Cryst. Liq. Cryst. 132, 29 (1986).
    [Crossref]
  10. S. T. Wu, U. Efron, L. D. Hess, “Infrared Birefringence of Liquid Crystals,” Appl. Phys. Lett. 44, 1033 (1984).
    [Crossref]
  11. K. Miyano, “Wall-Induced Pretransitional Birefringence: a New Tool to Study Boundary Aligning Forces in Liquid Crystals,” Phys. Rev. Lett. 43, 51 (1979).
    [Crossref]
  12. T. W. Stinson, J. D. Litster, “Pretransitional Phenomena in the Isotropic Phase of a Nematic Liquid Crystal,” Phys. Rev. Lett. 25, 503 (1970); also “Correlation Range of Fluctuations of Short-Range Order in the Isotropic Phase of a Liquid Crystal,” Phys. Rev. Lett. 30, 688 (1973).
    [Crossref]
  13. S. Chandrasekhar, Liquid Crystals, (Cambridge U.P., Cambridge, 1977), Chap. 2.
  14. For example, M. Born, E. Wolf, Principles of Optics, (Pergamon, New York, 1980).
  15. S. T. Wu, “Birefringence Dispersions of Liquid Crystals,” Phys. Rev. A 33, 1270 (1986).
    [Crossref] [PubMed]
  16. P. Chatelain, Acta Crystallogr. 1, 315 (1948).
    [Crossref]
  17. For a review, see A. Hordvik, “Measurement Techniques for Small Absorption Coefficients: Recent Advances,” Appl. Opt. 16, 2827 (1977).
    [Crossref] [PubMed]
  18. S. T. Wu, “Phase Retardation Dependent Optical Response Time of a Parallel-Aligned Liquid Crystal,” J. Appl. Phys. 60, 1836 (1986).
    [Crossref]

1986 (5)

A. M. Lackner, J. D. Margerum, C. I. VanAst, “Near Ultraviolet Photostability of Liquid Crystal Mixtures,” Mol. Cryst. Liq. Cryst. 141, 289 (1986).
[Crossref]

E. M. Aver’yanov, V. M. Muratov, V. G. Rumyantsev, V. A. Churkina, “Splitting of Polarization Absorption Bands with a Complex Vibron Structure in the Spectra of Impurity Liquid Crystals,” Sov. Phys. JETP 63, 57 (1986).

F. D. Saeva, G. A. Reynolds, “Aggregation Behavior of a Thermotropic Discotic Bi-4H-Pyran Derivative in Solution,” Mol. Cryst. Liq. Cryst. 132, 29 (1986).
[Crossref]

S. T. Wu, “Birefringence Dispersions of Liquid Crystals,” Phys. Rev. A 33, 1270 (1986).
[Crossref] [PubMed]

S. T. Wu, “Phase Retardation Dependent Optical Response Time of a Parallel-Aligned Liquid Crystal,” J. Appl. Phys. 60, 1836 (1986).
[Crossref]

1984 (2)

H. Hsiung, “Transient Laser-Induced Molecular Reorientation and Laser Heating in a Nematic Liquid Crystal,” L. P. Shi, Y. R. Shen, Phys. Rev. A 30, 1453 (1984).
[Crossref]

H. Hsiung, “Transient Laser-Induced Molecular Reorientation and Laser Heating in a Nematic Liquid Crystal,” L. P. Shi, Y. R. Shen, Phys. Rev. A 30, 1453 (1984).
[Crossref]

S. T. Wu, U. Efron, L. D. Hess, “Infrared Birefringence of Liquid Crystals,” Appl. Phys. Lett. 44, 1033 (1984).
[Crossref]

1981 (2)

S. D. Durbin, S. M. Arakelian, Y. R. Shen, “Optical Field-Induced Birefringence and Freedericksz Transition in a Nematic Liquid Crystal,” Phys. Rev. Lett. 47, 1411 (1981).
[Crossref]

I. C. Khoo, “Optically Induced Molecular Reorientation and Third-Order Nonlinear Optical Processes in Nematic Liquid Crystals,” Phys. Rev. A 23, 2077 (1981); Phys. Rev. A 25, 1636 (1982).
[Crossref]

1979 (1)

K. Miyano, “Wall-Induced Pretransitional Birefringence: a New Tool to Study Boundary Aligning Forces in Liquid Crystals,” Phys. Rev. Lett. 43, 51 (1979).
[Crossref]

1977 (1)

1972 (1)

A. Saupe, “Ultraviolet, Infrared and Magnetic Resonance Spectroscopy on Liquid Crystals,” Mol. Cryst. Liq. Cryst. 16, 87 (1972).
[Crossref]

1970 (1)

T. W. Stinson, J. D. Litster, “Pretransitional Phenomena in the Isotropic Phase of a Nematic Liquid Crystal,” Phys. Rev. Lett. 25, 503 (1970); also “Correlation Range of Fluctuations of Short-Range Order in the Isotropic Phase of a Liquid Crystal,” Phys. Rev. Lett. 30, 688 (1973).
[Crossref]

1948 (1)

P. Chatelain, Acta Crystallogr. 1, 315 (1948).
[Crossref]

Arakelian, S. M.

S. D. Durbin, S. M. Arakelian, Y. R. Shen, “Optical Field-Induced Birefringence and Freedericksz Transition in a Nematic Liquid Crystal,” Phys. Rev. Lett. 47, 1411 (1981).
[Crossref]

Aver’yanov, E. M.

E. M. Aver’yanov, V. M. Muratov, V. G. Rumyantsev, V. A. Churkina, “Splitting of Polarization Absorption Bands with a Complex Vibron Structure in the Spectra of Impurity Liquid Crystals,” Sov. Phys. JETP 63, 57 (1986).

Blinov, L. M.

For a general discussion, see L. M. Blinov, Electro-optical and magneto-optical properties of liquid crystals (Wiley, New York, 1983).

Born, M.

For example, M. Born, E. Wolf, Principles of Optics, (Pergamon, New York, 1980).

Chandrasekhar, S.

S. Chandrasekhar, Liquid Crystals, (Cambridge U.P., Cambridge, 1977), Chap. 2.

Chatelain, P.

P. Chatelain, Acta Crystallogr. 1, 315 (1948).
[Crossref]

Churkina, V. A.

E. M. Aver’yanov, V. M. Muratov, V. G. Rumyantsev, V. A. Churkina, “Splitting of Polarization Absorption Bands with a Complex Vibron Structure in the Spectra of Impurity Liquid Crystals,” Sov. Phys. JETP 63, 57 (1986).

deGennes, P. G.

P. G. deGennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974), Chaps. 2 & 3.

Durbin, S. D.

S. D. Durbin, S. M. Arakelian, Y. R. Shen, “Optical Field-Induced Birefringence and Freedericksz Transition in a Nematic Liquid Crystal,” Phys. Rev. Lett. 47, 1411 (1981).
[Crossref]

Efron, U.

S. T. Wu, U. Efron, L. D. Hess, “Infrared Birefringence of Liquid Crystals,” Appl. Phys. Lett. 44, 1033 (1984).
[Crossref]

Hess, L. D.

S. T. Wu, U. Efron, L. D. Hess, “Infrared Birefringence of Liquid Crystals,” Appl. Phys. Lett. 44, 1033 (1984).
[Crossref]

Hordvik, A.

Hsiung, H.

H. Hsiung, “Transient Laser-Induced Molecular Reorientation and Laser Heating in a Nematic Liquid Crystal,” L. P. Shi, Y. R. Shen, Phys. Rev. A 30, 1453 (1984).
[Crossref]

Khoo, I. C.

I. C. Khoo, “Optically Induced Molecular Reorientation and Third-Order Nonlinear Optical Processes in Nematic Liquid Crystals,” Phys. Rev. A 23, 2077 (1981); Phys. Rev. A 25, 1636 (1982).
[Crossref]

Lackner, A. M.

A. M. Lackner, J. D. Margerum, C. I. VanAst, “Near Ultraviolet Photostability of Liquid Crystal Mixtures,” Mol. Cryst. Liq. Cryst. 141, 289 (1986).
[Crossref]

Litster, J. D.

T. W. Stinson, J. D. Litster, “Pretransitional Phenomena in the Isotropic Phase of a Nematic Liquid Crystal,” Phys. Rev. Lett. 25, 503 (1970); also “Correlation Range of Fluctuations of Short-Range Order in the Isotropic Phase of a Liquid Crystal,” Phys. Rev. Lett. 30, 688 (1973).
[Crossref]

Margerum, J. D.

A. M. Lackner, J. D. Margerum, C. I. VanAst, “Near Ultraviolet Photostability of Liquid Crystal Mixtures,” Mol. Cryst. Liq. Cryst. 141, 289 (1986).
[Crossref]

Miyano, K.

K. Miyano, “Wall-Induced Pretransitional Birefringence: a New Tool to Study Boundary Aligning Forces in Liquid Crystals,” Phys. Rev. Lett. 43, 51 (1979).
[Crossref]

Muratov, V. M.

E. M. Aver’yanov, V. M. Muratov, V. G. Rumyantsev, V. A. Churkina, “Splitting of Polarization Absorption Bands with a Complex Vibron Structure in the Spectra of Impurity Liquid Crystals,” Sov. Phys. JETP 63, 57 (1986).

Reynolds, G. A.

F. D. Saeva, G. A. Reynolds, “Aggregation Behavior of a Thermotropic Discotic Bi-4H-Pyran Derivative in Solution,” Mol. Cryst. Liq. Cryst. 132, 29 (1986).
[Crossref]

Rumyantsev, V. G.

E. M. Aver’yanov, V. M. Muratov, V. G. Rumyantsev, V. A. Churkina, “Splitting of Polarization Absorption Bands with a Complex Vibron Structure in the Spectra of Impurity Liquid Crystals,” Sov. Phys. JETP 63, 57 (1986).

Saeva, F. D.

F. D. Saeva, G. A. Reynolds, “Aggregation Behavior of a Thermotropic Discotic Bi-4H-Pyran Derivative in Solution,” Mol. Cryst. Liq. Cryst. 132, 29 (1986).
[Crossref]

Saupe, A.

A. Saupe, “Ultraviolet, Infrared and Magnetic Resonance Spectroscopy on Liquid Crystals,” Mol. Cryst. Liq. Cryst. 16, 87 (1972).
[Crossref]

Shen, Y. R.

H. Hsiung, “Transient Laser-Induced Molecular Reorientation and Laser Heating in a Nematic Liquid Crystal,” L. P. Shi, Y. R. Shen, Phys. Rev. A 30, 1453 (1984).
[Crossref]

S. D. Durbin, S. M. Arakelian, Y. R. Shen, “Optical Field-Induced Birefringence and Freedericksz Transition in a Nematic Liquid Crystal,” Phys. Rev. Lett. 47, 1411 (1981).
[Crossref]

Shi, L. P.

H. Hsiung, “Transient Laser-Induced Molecular Reorientation and Laser Heating in a Nematic Liquid Crystal,” L. P. Shi, Y. R. Shen, Phys. Rev. A 30, 1453 (1984).
[Crossref]

Stinson, T. W.

T. W. Stinson, J. D. Litster, “Pretransitional Phenomena in the Isotropic Phase of a Nematic Liquid Crystal,” Phys. Rev. Lett. 25, 503 (1970); also “Correlation Range of Fluctuations of Short-Range Order in the Isotropic Phase of a Liquid Crystal,” Phys. Rev. Lett. 30, 688 (1973).
[Crossref]

VanAst, C. I.

A. M. Lackner, J. D. Margerum, C. I. VanAst, “Near Ultraviolet Photostability of Liquid Crystal Mixtures,” Mol. Cryst. Liq. Cryst. 141, 289 (1986).
[Crossref]

Wolf, E.

For example, M. Born, E. Wolf, Principles of Optics, (Pergamon, New York, 1980).

Wu, S. T.

S. T. Wu, “Birefringence Dispersions of Liquid Crystals,” Phys. Rev. A 33, 1270 (1986).
[Crossref] [PubMed]

S. T. Wu, “Phase Retardation Dependent Optical Response Time of a Parallel-Aligned Liquid Crystal,” J. Appl. Phys. 60, 1836 (1986).
[Crossref]

S. T. Wu, U. Efron, L. D. Hess, “Infrared Birefringence of Liquid Crystals,” Appl. Phys. Lett. 44, 1033 (1984).
[Crossref]

Acta Crystallogr. (1)

P. Chatelain, Acta Crystallogr. 1, 315 (1948).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. T. Wu, U. Efron, L. D. Hess, “Infrared Birefringence of Liquid Crystals,” Appl. Phys. Lett. 44, 1033 (1984).
[Crossref]

J. Appl. Phys. (1)

S. T. Wu, “Phase Retardation Dependent Optical Response Time of a Parallel-Aligned Liquid Crystal,” J. Appl. Phys. 60, 1836 (1986).
[Crossref]

Mol. Cryst. Liq. Cryst. (3)

F. D. Saeva, G. A. Reynolds, “Aggregation Behavior of a Thermotropic Discotic Bi-4H-Pyran Derivative in Solution,” Mol. Cryst. Liq. Cryst. 132, 29 (1986).
[Crossref]

A. M. Lackner, J. D. Margerum, C. I. VanAst, “Near Ultraviolet Photostability of Liquid Crystal Mixtures,” Mol. Cryst. Liq. Cryst. 141, 289 (1986).
[Crossref]

A. Saupe, “Ultraviolet, Infrared and Magnetic Resonance Spectroscopy on Liquid Crystals,” Mol. Cryst. Liq. Cryst. 16, 87 (1972).
[Crossref]

Phys. Rev. A (3)

I. C. Khoo, “Optically Induced Molecular Reorientation and Third-Order Nonlinear Optical Processes in Nematic Liquid Crystals,” Phys. Rev. A 23, 2077 (1981); Phys. Rev. A 25, 1636 (1982).
[Crossref]

H. Hsiung, “Transient Laser-Induced Molecular Reorientation and Laser Heating in a Nematic Liquid Crystal,” L. P. Shi, Y. R. Shen, Phys. Rev. A 30, 1453 (1984).
[Crossref]

S. T. Wu, “Birefringence Dispersions of Liquid Crystals,” Phys. Rev. A 33, 1270 (1986).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

K. Miyano, “Wall-Induced Pretransitional Birefringence: a New Tool to Study Boundary Aligning Forces in Liquid Crystals,” Phys. Rev. Lett. 43, 51 (1979).
[Crossref]

T. W. Stinson, J. D. Litster, “Pretransitional Phenomena in the Isotropic Phase of a Nematic Liquid Crystal,” Phys. Rev. Lett. 25, 503 (1970); also “Correlation Range of Fluctuations of Short-Range Order in the Isotropic Phase of a Liquid Crystal,” Phys. Rev. Lett. 30, 688 (1973).
[Crossref]

S. D. Durbin, S. M. Arakelian, Y. R. Shen, “Optical Field-Induced Birefringence and Freedericksz Transition in a Nematic Liquid Crystal,” Phys. Rev. Lett. 47, 1411 (1981).
[Crossref]

Sov. Phys. JETP (1)

E. M. Aver’yanov, V. M. Muratov, V. G. Rumyantsev, V. A. Churkina, “Splitting of Polarization Absorption Bands with a Complex Vibron Structure in the Spectra of Impurity Liquid Crystals,” Sov. Phys. JETP 63, 57 (1986).

Other (4)

P. G. deGennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974), Chaps. 2 & 3.

For a general discussion, see L. M. Blinov, Electro-optical and magneto-optical properties of liquid crystals (Wiley, New York, 1983).

S. Chandrasekhar, Liquid Crystals, (Cambridge U.P., Cambridge, 1977), Chap. 2.

For example, M. Born, E. Wolf, Principles of Optics, (Pergamon, New York, 1980).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Possible power losses encountered in the conventional transmission measurement technique. The absorbed power is not shown.

Fig. 2
Fig. 2

Schematic sketch of the experimental apparatus used for measuring the absorption and scattering losses of LCs.

Fig. 3
Fig. 3

(a) Thickness-dependent transmission loss of the E-7 LC mixture at λ = 0.633 μm. (b) The plot of (1 − T)/d vs d for E-7 at λ = 0.633 μm. The slopes of the line is equal to −α(α + β)/2, and the intersection at d = 0 gives α + β.

Fig. 4
Fig. 4

Temperature-dependent scattering coefficient of the unaligned E-7 LC. The Tc of E-7 is ~59.5°C. The cross data points represent the corresponding absorption coefficients. The wavelengths used in the experiment is λ = 0.633 μm.

Fig. 5
Fig. 5

Wavelength-dependent absorption coefficient of the E-7 and MBBA LCs at T = 90 and 60°C for E-7 and MBBA, respectively. From the fitting of Eq. (6) to the experimental results, [α0,λ*] is found to be [2.26 × 108 cm−3, 250 nm] and [1.68 × 108 cm−3, 300 nm] for E-7 and MBBA, respectively.

Fig. 6
Fig. 6

Wavelength-dependent scattering of the E-7 LC mixture. The open circles represent data points for the aligned LC in nematic phase and dots for the unaligned LC in isotropic phase.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P in = P R 1 + P s + P abs + P R 2 + P t ,
P t P i n = [ 1 - ( n - 1 n + 1 ) 2 ] 2 [ exp ( - α d ) · exp ( - Ω A d ) ] ,
T ( 1 - α d + ½ α 2 d 2 + ) ( 1 - β d + ) 1 - ( α + β ) d + ½ α ( α + β ) d 2 +
( 1 - T ) / d ( α + β ) - ½ α ( α + β ) d .
α ~ 4 π N e 2 m c i f i γ i ω 2 ( ω i 2 - ω 2 ) 2 + γ i 2 ω 2 ,
α α 0 λ 2 [ ( λ λ * ) 2 - 1 ] 2
½ α d P Δ t ~ ρ V C p Δ T .

Metrics