Abstract

An automated Young’s fringe processor for point filtering of speckle photographs is described. It automatically measures the magnitude and direction of displacements from fringe densities of less than twenty with good accuracies. Microcomputer-based, requiring <64K of memory, the system provides full automation by employing computer-controlled scanning.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. J. Parks, “The Range of Speckle Metrology,” Exp. Mech. 20, 181 (1980).
    [CrossRef]
  2. G. Cloud, “Practical Speckle Interferometry for Measuring In-Plane Deformation,” Appl. Opt. 14, 878 (1975).
    [CrossRef] [PubMed]
  3. J. Burdiko, M. D. Olson, C. R. Hazell, “New Aspects of Surface Displacement and Strain Analysis by Speckle Interferometry,” Exp. Mech. 19, 160 (1979).
    [CrossRef]
  4. F. P. Chiang, J. Adachi, R. Anastasi, J. Beatty, “Subjective Laser Speckle Method and Its Application to Solid Mechanics Problems,” Opt. Eng. 21, 379 (1982).
    [CrossRef]
  5. B. Ineichen, P. Eglin, R. Dandliker, “Hybrid Optical and Electronic Image Processing for Strain Measurements by Speckle Photography,” Appl. Opt. 19, 2191 (1980).
    [CrossRef] [PubMed]
  6. G. E. Maddux, R. R. Corwin, S. L. Moormann, “An Automated Data Reduction Device for Speckle Metrology,” in SESA Proceedings, 1981 Spring Meeting.
  7. G. H. Kaufmann, “Numerical Processing of Speckle Photography Data by Fourier Transform,” Appl. Opt. 20, 4277 (1981).
    [CrossRef] [PubMed]
  8. G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, “An Electrooptical Read Out System for Analysis of Speckle Photographs,” J. Phys. E 13, 579 (1980).
    [CrossRef]
  9. L. R. Rabiner, M. R. Samber, C. E. Schmidt, “Application of a Nonlinear Smoothing Algorithm to Speech Processing,” IEEE Trans. Acoust. Speech Signal Process. ASSP-23, 552 (1975).
    [CrossRef]
  10. G. Ciurpita, “Automated Arrhythmia Detection in the Exercise Electrocardiogram,” Master’s Thesis, New Jersey Institute of Technology (May1985).

1982 (1)

F. P. Chiang, J. Adachi, R. Anastasi, J. Beatty, “Subjective Laser Speckle Method and Its Application to Solid Mechanics Problems,” Opt. Eng. 21, 379 (1982).
[CrossRef]

1981 (1)

1980 (3)

B. Ineichen, P. Eglin, R. Dandliker, “Hybrid Optical and Electronic Image Processing for Strain Measurements by Speckle Photography,” Appl. Opt. 19, 2191 (1980).
[CrossRef] [PubMed]

V. J. Parks, “The Range of Speckle Metrology,” Exp. Mech. 20, 181 (1980).
[CrossRef]

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, “An Electrooptical Read Out System for Analysis of Speckle Photographs,” J. Phys. E 13, 579 (1980).
[CrossRef]

1979 (1)

J. Burdiko, M. D. Olson, C. R. Hazell, “New Aspects of Surface Displacement and Strain Analysis by Speckle Interferometry,” Exp. Mech. 19, 160 (1979).
[CrossRef]

1975 (2)

L. R. Rabiner, M. R. Samber, C. E. Schmidt, “Application of a Nonlinear Smoothing Algorithm to Speech Processing,” IEEE Trans. Acoust. Speech Signal Process. ASSP-23, 552 (1975).
[CrossRef]

G. Cloud, “Practical Speckle Interferometry for Measuring In-Plane Deformation,” Appl. Opt. 14, 878 (1975).
[CrossRef] [PubMed]

Adachi, J.

F. P. Chiang, J. Adachi, R. Anastasi, J. Beatty, “Subjective Laser Speckle Method and Its Application to Solid Mechanics Problems,” Opt. Eng. 21, 379 (1982).
[CrossRef]

Anastasi, R.

F. P. Chiang, J. Adachi, R. Anastasi, J. Beatty, “Subjective Laser Speckle Method and Its Application to Solid Mechanics Problems,” Opt. Eng. 21, 379 (1982).
[CrossRef]

Beatty, J.

F. P. Chiang, J. Adachi, R. Anastasi, J. Beatty, “Subjective Laser Speckle Method and Its Application to Solid Mechanics Problems,” Opt. Eng. 21, 379 (1982).
[CrossRef]

Burdiko, J.

J. Burdiko, M. D. Olson, C. R. Hazell, “New Aspects of Surface Displacement and Strain Analysis by Speckle Interferometry,” Exp. Mech. 19, 160 (1979).
[CrossRef]

Chiang, F. P.

F. P. Chiang, J. Adachi, R. Anastasi, J. Beatty, “Subjective Laser Speckle Method and Its Application to Solid Mechanics Problems,” Opt. Eng. 21, 379 (1982).
[CrossRef]

Ciurpita, G.

G. Ciurpita, “Automated Arrhythmia Detection in the Exercise Electrocardiogram,” Master’s Thesis, New Jersey Institute of Technology (May1985).

Cloud, G.

Corwin, R. R.

G. E. Maddux, R. R. Corwin, S. L. Moormann, “An Automated Data Reduction Device for Speckle Metrology,” in SESA Proceedings, 1981 Spring Meeting.

Dandliker, R.

Eglin, P.

Ennos, A. E.

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, “An Electrooptical Read Out System for Analysis of Speckle Photographs,” J. Phys. E 13, 579 (1980).
[CrossRef]

Gale, B.

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, “An Electrooptical Read Out System for Analysis of Speckle Photographs,” J. Phys. E 13, 579 (1980).
[CrossRef]

Hazell, C. R.

J. Burdiko, M. D. Olson, C. R. Hazell, “New Aspects of Surface Displacement and Strain Analysis by Speckle Interferometry,” Exp. Mech. 19, 160 (1979).
[CrossRef]

Ineichen, B.

Kaufmann, G. H.

G. H. Kaufmann, “Numerical Processing of Speckle Photography Data by Fourier Transform,” Appl. Opt. 20, 4277 (1981).
[CrossRef] [PubMed]

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, “An Electrooptical Read Out System for Analysis of Speckle Photographs,” J. Phys. E 13, 579 (1980).
[CrossRef]

Maddux, G. E.

G. E. Maddux, R. R. Corwin, S. L. Moormann, “An Automated Data Reduction Device for Speckle Metrology,” in SESA Proceedings, 1981 Spring Meeting.

Moormann, S. L.

G. E. Maddux, R. R. Corwin, S. L. Moormann, “An Automated Data Reduction Device for Speckle Metrology,” in SESA Proceedings, 1981 Spring Meeting.

Olson, M. D.

J. Burdiko, M. D. Olson, C. R. Hazell, “New Aspects of Surface Displacement and Strain Analysis by Speckle Interferometry,” Exp. Mech. 19, 160 (1979).
[CrossRef]

Parks, V. J.

V. J. Parks, “The Range of Speckle Metrology,” Exp. Mech. 20, 181 (1980).
[CrossRef]

Pugh, D. J.

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, “An Electrooptical Read Out System for Analysis of Speckle Photographs,” J. Phys. E 13, 579 (1980).
[CrossRef]

Rabiner, L. R.

L. R. Rabiner, M. R. Samber, C. E. Schmidt, “Application of a Nonlinear Smoothing Algorithm to Speech Processing,” IEEE Trans. Acoust. Speech Signal Process. ASSP-23, 552 (1975).
[CrossRef]

Samber, M. R.

L. R. Rabiner, M. R. Samber, C. E. Schmidt, “Application of a Nonlinear Smoothing Algorithm to Speech Processing,” IEEE Trans. Acoust. Speech Signal Process. ASSP-23, 552 (1975).
[CrossRef]

Schmidt, C. E.

L. R. Rabiner, M. R. Samber, C. E. Schmidt, “Application of a Nonlinear Smoothing Algorithm to Speech Processing,” IEEE Trans. Acoust. Speech Signal Process. ASSP-23, 552 (1975).
[CrossRef]

Appl. Opt. (3)

Exp. Mech. (2)

V. J. Parks, “The Range of Speckle Metrology,” Exp. Mech. 20, 181 (1980).
[CrossRef]

J. Burdiko, M. D. Olson, C. R. Hazell, “New Aspects of Surface Displacement and Strain Analysis by Speckle Interferometry,” Exp. Mech. 19, 160 (1979).
[CrossRef]

IEEE Trans. Acoust. Speech Signal Process. (1)

L. R. Rabiner, M. R. Samber, C. E. Schmidt, “Application of a Nonlinear Smoothing Algorithm to Speech Processing,” IEEE Trans. Acoust. Speech Signal Process. ASSP-23, 552 (1975).
[CrossRef]

J. Phys. E (1)

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, “An Electrooptical Read Out System for Analysis of Speckle Photographs,” J. Phys. E 13, 579 (1980).
[CrossRef]

Opt. Eng. (1)

F. P. Chiang, J. Adachi, R. Anastasi, J. Beatty, “Subjective Laser Speckle Method and Its Application to Solid Mechanics Problems,” Opt. Eng. 21, 379 (1982).
[CrossRef]

Other (2)

G. E. Maddux, R. R. Corwin, S. L. Moormann, “An Automated Data Reduction Device for Speckle Metrology,” in SESA Proceedings, 1981 Spring Meeting.

G. Ciurpita, “Automated Arrhythmia Detection in the Exercise Electrocardiogram,” Master’s Thesis, New Jersey Institute of Technology (May1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Fringe reconstruction arrangement.

Fig. 2
Fig. 2

Young’s fringe pattern.

Fig. 3
Fig. 3

System block diagram.

Fig. 4
Fig. 4

Young’s fringe data acquisition system.

Fig. 5
Fig. 5

Typical unsmoothed light intensity waveform.

Fig. 6
Fig. 6

Typical light intensity waveform with detected peaks.

Fig. 7
Fig. 7

Typical smoothed light intensity waveform after median filtering.

Fig. 8
Fig. 8

Comparison of measured and applied displacements.

Fig. 9
Fig. 9

Comparison of heavily populated Young’s fringe pattern with the corresponding intensity waveform.

Fig. 10
Fig. 10

Rotational stage in the speckle photography testing setup.

Fig. 11
Fig. 11

Points on the rotational stage analyzed by the data acquisition system.

Tables (1)

Tables Icon

Table I Rotations Obtained from Displacements Measured by the Data Acquisition System

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C F p k = m = 0 M i p k - n i p k + n m = 0 M i p k - n 2 m = 0 M i p k + n 2 ,
d = L λ S M ,

Metrics