Abstract

A new measurement system for fault location in optical waveguide devices is presented. The system consists of a fiber-optic Mach-Zehnder and a bulk-type Michelson interferometers. The spatial resolution of the scatter distribution is <380 μm, which is limited by the averaging time. The minimum detectable backscattered power is −116 dB relative to the light power propagating in the waveguides. Preliminary experimental results using single-mode fibers <10 cm long are demonstrated.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. K. Barnoski, S. M. Jensen, “Fiber Waveguides: A Novel Technique for Investigating Attenuation Characteristics,” Appl. Opt. 15, 2112 (1976).
    [CrossRef] [PubMed]
  2. S. D. Barnoski, “Photon Probe–An Optical Fiber Time Domain Reflectometry,” Bell Syst. Tech. J. 56, 355 (1977).
  3. I. P. Kaminow, J. R. Carruthers, “Optical Waveguide Layers in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 22, 326 (1973).
    [CrossRef]
  4. N. Takato, M. Yasu, M. Kawachi, “High-Silica Single-Mode Channel Waveguides,” Electron. Lett. 22, 321 (1986).
    [CrossRef]
  5. S. A. Kingsley, “OFDR Diagnostics for Fiber and Integrated-Optic Systems,” Electron. Lett. 21, 434 (1985).
    [CrossRef]
  6. C. S. Wang, W. H. Cheng, C. J. Huang, W. K. Burns, R. P. Moeller, “High-Power Low-Divergence Superradiant Diode,” Appl. Phys. Lett. 41, 587 (1982).
    [CrossRef]
  7. I. Yokohama, M. Kawachi, K. Okamoto, J. Noda, “Polarization-Maintaining Fiber Couplers with Low-Excess Loss,” Electron. Lett. 22, 929 (1986).
    [CrossRef]
  8. K. Takada, J. Noda, K. Okamoto, “Measurement of Spatial Distribution of Mode Coupling in Birefringent Polarization-Maintaining Fiber with New Detection Scheme,” Opt. Lett. 11, 680 (1986).
    [CrossRef] [PubMed]
  9. E. Brinkmeyer, “Analysis of the Backscattering Method for Single-Mode Optical Fibers,” Electron. Lett. 16, 329 (1980).
    [CrossRef]
  10. M. Horiguchi, H. Osanai, “Spectral Losses of Low-OH-Content Optical Fibers,” Electron. Lett. 12, 310 (1976).
    [CrossRef]

1986 (3)

N. Takato, M. Yasu, M. Kawachi, “High-Silica Single-Mode Channel Waveguides,” Electron. Lett. 22, 321 (1986).
[CrossRef]

I. Yokohama, M. Kawachi, K. Okamoto, J. Noda, “Polarization-Maintaining Fiber Couplers with Low-Excess Loss,” Electron. Lett. 22, 929 (1986).
[CrossRef]

K. Takada, J. Noda, K. Okamoto, “Measurement of Spatial Distribution of Mode Coupling in Birefringent Polarization-Maintaining Fiber with New Detection Scheme,” Opt. Lett. 11, 680 (1986).
[CrossRef] [PubMed]

1985 (1)

S. A. Kingsley, “OFDR Diagnostics for Fiber and Integrated-Optic Systems,” Electron. Lett. 21, 434 (1985).
[CrossRef]

1982 (1)

C. S. Wang, W. H. Cheng, C. J. Huang, W. K. Burns, R. P. Moeller, “High-Power Low-Divergence Superradiant Diode,” Appl. Phys. Lett. 41, 587 (1982).
[CrossRef]

1980 (1)

E. Brinkmeyer, “Analysis of the Backscattering Method for Single-Mode Optical Fibers,” Electron. Lett. 16, 329 (1980).
[CrossRef]

1977 (1)

S. D. Barnoski, “Photon Probe–An Optical Fiber Time Domain Reflectometry,” Bell Syst. Tech. J. 56, 355 (1977).

1976 (2)

1973 (1)

I. P. Kaminow, J. R. Carruthers, “Optical Waveguide Layers in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 22, 326 (1973).
[CrossRef]

Barnoski, M. K.

Barnoski, S. D.

S. D. Barnoski, “Photon Probe–An Optical Fiber Time Domain Reflectometry,” Bell Syst. Tech. J. 56, 355 (1977).

Brinkmeyer, E.

E. Brinkmeyer, “Analysis of the Backscattering Method for Single-Mode Optical Fibers,” Electron. Lett. 16, 329 (1980).
[CrossRef]

Burns, W. K.

C. S. Wang, W. H. Cheng, C. J. Huang, W. K. Burns, R. P. Moeller, “High-Power Low-Divergence Superradiant Diode,” Appl. Phys. Lett. 41, 587 (1982).
[CrossRef]

Carruthers, J. R.

I. P. Kaminow, J. R. Carruthers, “Optical Waveguide Layers in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 22, 326 (1973).
[CrossRef]

Cheng, W. H.

C. S. Wang, W. H. Cheng, C. J. Huang, W. K. Burns, R. P. Moeller, “High-Power Low-Divergence Superradiant Diode,” Appl. Phys. Lett. 41, 587 (1982).
[CrossRef]

Horiguchi, M.

M. Horiguchi, H. Osanai, “Spectral Losses of Low-OH-Content Optical Fibers,” Electron. Lett. 12, 310 (1976).
[CrossRef]

Huang, C. J.

C. S. Wang, W. H. Cheng, C. J. Huang, W. K. Burns, R. P. Moeller, “High-Power Low-Divergence Superradiant Diode,” Appl. Phys. Lett. 41, 587 (1982).
[CrossRef]

Jensen, S. M.

Kaminow, I. P.

I. P. Kaminow, J. R. Carruthers, “Optical Waveguide Layers in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 22, 326 (1973).
[CrossRef]

Kawachi, M.

N. Takato, M. Yasu, M. Kawachi, “High-Silica Single-Mode Channel Waveguides,” Electron. Lett. 22, 321 (1986).
[CrossRef]

I. Yokohama, M. Kawachi, K. Okamoto, J. Noda, “Polarization-Maintaining Fiber Couplers with Low-Excess Loss,” Electron. Lett. 22, 929 (1986).
[CrossRef]

Kingsley, S. A.

S. A. Kingsley, “OFDR Diagnostics for Fiber and Integrated-Optic Systems,” Electron. Lett. 21, 434 (1985).
[CrossRef]

Moeller, R. P.

C. S. Wang, W. H. Cheng, C. J. Huang, W. K. Burns, R. P. Moeller, “High-Power Low-Divergence Superradiant Diode,” Appl. Phys. Lett. 41, 587 (1982).
[CrossRef]

Noda, J.

K. Takada, J. Noda, K. Okamoto, “Measurement of Spatial Distribution of Mode Coupling in Birefringent Polarization-Maintaining Fiber with New Detection Scheme,” Opt. Lett. 11, 680 (1986).
[CrossRef] [PubMed]

I. Yokohama, M. Kawachi, K. Okamoto, J. Noda, “Polarization-Maintaining Fiber Couplers with Low-Excess Loss,” Electron. Lett. 22, 929 (1986).
[CrossRef]

Okamoto, K.

I. Yokohama, M. Kawachi, K. Okamoto, J. Noda, “Polarization-Maintaining Fiber Couplers with Low-Excess Loss,” Electron. Lett. 22, 929 (1986).
[CrossRef]

K. Takada, J. Noda, K. Okamoto, “Measurement of Spatial Distribution of Mode Coupling in Birefringent Polarization-Maintaining Fiber with New Detection Scheme,” Opt. Lett. 11, 680 (1986).
[CrossRef] [PubMed]

Osanai, H.

M. Horiguchi, H. Osanai, “Spectral Losses of Low-OH-Content Optical Fibers,” Electron. Lett. 12, 310 (1976).
[CrossRef]

Takada, K.

Takato, N.

N. Takato, M. Yasu, M. Kawachi, “High-Silica Single-Mode Channel Waveguides,” Electron. Lett. 22, 321 (1986).
[CrossRef]

Wang, C. S.

C. S. Wang, W. H. Cheng, C. J. Huang, W. K. Burns, R. P. Moeller, “High-Power Low-Divergence Superradiant Diode,” Appl. Phys. Lett. 41, 587 (1982).
[CrossRef]

Yasu, M.

N. Takato, M. Yasu, M. Kawachi, “High-Silica Single-Mode Channel Waveguides,” Electron. Lett. 22, 321 (1986).
[CrossRef]

Yokohama, I.

I. Yokohama, M. Kawachi, K. Okamoto, J. Noda, “Polarization-Maintaining Fiber Couplers with Low-Excess Loss,” Electron. Lett. 22, 929 (1986).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

I. P. Kaminow, J. R. Carruthers, “Optical Waveguide Layers in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 22, 326 (1973).
[CrossRef]

C. S. Wang, W. H. Cheng, C. J. Huang, W. K. Burns, R. P. Moeller, “High-Power Low-Divergence Superradiant Diode,” Appl. Phys. Lett. 41, 587 (1982).
[CrossRef]

Bell Syst. Tech. J. (1)

S. D. Barnoski, “Photon Probe–An Optical Fiber Time Domain Reflectometry,” Bell Syst. Tech. J. 56, 355 (1977).

Electron. Lett. (5)

N. Takato, M. Yasu, M. Kawachi, “High-Silica Single-Mode Channel Waveguides,” Electron. Lett. 22, 321 (1986).
[CrossRef]

S. A. Kingsley, “OFDR Diagnostics for Fiber and Integrated-Optic Systems,” Electron. Lett. 21, 434 (1985).
[CrossRef]

I. Yokohama, M. Kawachi, K. Okamoto, J. Noda, “Polarization-Maintaining Fiber Couplers with Low-Excess Loss,” Electron. Lett. 22, 929 (1986).
[CrossRef]

E. Brinkmeyer, “Analysis of the Backscattering Method for Single-Mode Optical Fibers,” Electron. Lett. 16, 329 (1980).
[CrossRef]

M. Horiguchi, H. Osanai, “Spectral Losses of Low-OH-Content Optical Fibers,” Electron. Lett. 12, 310 (1976).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for locating faults in optical waveguide devices.

Fig. 2
Fig. 2

Schematic diagram of the interference envelopes in the Michelson interferometer. P1 and P2 are the arms in the interferometer.

Fig. 3
Fig. 3

Measured interference signals vs optical path difference P1P2 when 1.18-cm long fiber was used as the test waveguide.

Fig. 4
Fig. 4

Relative amplitude vs refractive index n m of matching oil. The refractive index is at the 0.83-μm central wavelength of the SLD.

Fig. 5
Fig. 5

Relative amplitude Γ vs optical path difference P1P2 when fibers (a) 2.58 cm long and (b) 5.16 cm long are used as test waveguides. The zero levels correspond to the averaged values of Γ in the regions of (a) R2 = (P1P2 > 9 cm) and (b) R4 = (P1P2 > 17 cm). The dotted lines show the averaged levels of Γ in the regions of (a) R1 = (0.9 < P1P2 < 6.4 cm) and (b) R3 = (2.3 < P1P2 < 13 cm).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S = 3 Δ ( W 0 / a ) 2 / V 2 ,
W 0 / a = 0.65 + 1.619 V - 3 / 2 + 2.879 V - 6 .
α = ( 24.8 Δ + 0.76 ) λ - 4 ,

Metrics