Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Feichtner, G. W. Roland, “Optical Properties of a New Nonlinear Optical Material: Tl3AsSe3,” Appl. Opt. 11, 993 (1972).
    [CrossRef] [PubMed]
  2. B. Feldman, R. Auyeung, D. Zielke, “Efficient Harmonic Generation of CO2 Laser Radiation in Thallium Arsenic Selenide,” in Technical Digest, International Laser Science Conference (Optical Society of America, Washington, DC, 1986), paper THJ7.
  3. J. Geusic, H. Levinstein, S. Singh, R. Smith, L. VanUitert, “A Continuous 0.53μm Solid-State Source Using Ba2NaNb5O15,” IEEE J. Quantum Electron. QE-4, 352 (1968).
    [CrossRef]
  4. T. Y. Pan, G. J. Dixon, R. L. Byer, “Efficient GaAlAs Diode-Laser-Pumped Operation of Nd:TYF at 1.047 μm with Intracavity Doubling to 523.6 nm,” Opt. Lett. 11, 204 (1986).
    [CrossRef]
  5. C. R. Webster, L. Woste, R. N. Zare, “Narrow-Band UV Radiation (250–260 nm) from Intracavity Doubling a Single-Mode Ring Dye Laser,” Opt. Commun. 35, 435 (1980).
    [CrossRef]
  6. A. I. Ferguson, M. H. Dunn, “Intracavity Second-Harmonic Generation in Continuous-Wave Dye Lasers,” IEEE J. Quantum Electron. QE-13, 751 (1977).
    [CrossRef]
  7. C. Gabel, M. Hercher, “A Continuous Tunable Source of Coherent UV Radiation,” IEEE J. Quantum Electron. QE-8, 850 (1972).
    [CrossRef]
  8. A. Yariv, Quantum Electronics (Wiley, New York, 1975).
  9. T. Henningsen, M. Garbuny, Z. Kun, N. Singh, “Growth, Fabrication, and Test of Large TAS Crystals for Second Harmonic Generation,” Final Report contract N00014-84-C-2209 (1985).
  10. K. Deb, “Pulsed CO2 Laser Damage to Coated and Uncoated Thallium-Arsenic-Selenide,” Center for Night Vision and Electro-Optics, Internal Report DELNV-TR-0048 (1983).
  11. G. D. Boyd, D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39, No. 8A3597 (1968).
    [CrossRef]
  12. R. G. Smith, “Theory of Intracavity Optical Second-Harmonic Generation,” IEEE J. Quantum Electron. QE-6, 215 (1970).
    [CrossRef]

1986 (1)

1980 (1)

C. R. Webster, L. Woste, R. N. Zare, “Narrow-Band UV Radiation (250–260 nm) from Intracavity Doubling a Single-Mode Ring Dye Laser,” Opt. Commun. 35, 435 (1980).
[CrossRef]

1977 (1)

A. I. Ferguson, M. H. Dunn, “Intracavity Second-Harmonic Generation in Continuous-Wave Dye Lasers,” IEEE J. Quantum Electron. QE-13, 751 (1977).
[CrossRef]

1972 (2)

C. Gabel, M. Hercher, “A Continuous Tunable Source of Coherent UV Radiation,” IEEE J. Quantum Electron. QE-8, 850 (1972).
[CrossRef]

J. D. Feichtner, G. W. Roland, “Optical Properties of a New Nonlinear Optical Material: Tl3AsSe3,” Appl. Opt. 11, 993 (1972).
[CrossRef] [PubMed]

1970 (1)

R. G. Smith, “Theory of Intracavity Optical Second-Harmonic Generation,” IEEE J. Quantum Electron. QE-6, 215 (1970).
[CrossRef]

1968 (2)

J. Geusic, H. Levinstein, S. Singh, R. Smith, L. VanUitert, “A Continuous 0.53μm Solid-State Source Using Ba2NaNb5O15,” IEEE J. Quantum Electron. QE-4, 352 (1968).
[CrossRef]

G. D. Boyd, D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39, No. 8A3597 (1968).
[CrossRef]

Auyeung, R.

B. Feldman, R. Auyeung, D. Zielke, “Efficient Harmonic Generation of CO2 Laser Radiation in Thallium Arsenic Selenide,” in Technical Digest, International Laser Science Conference (Optical Society of America, Washington, DC, 1986), paper THJ7.

Boyd, G. D.

G. D. Boyd, D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39, No. 8A3597 (1968).
[CrossRef]

Byer, R. L.

Deb, K.

K. Deb, “Pulsed CO2 Laser Damage to Coated and Uncoated Thallium-Arsenic-Selenide,” Center for Night Vision and Electro-Optics, Internal Report DELNV-TR-0048 (1983).

Dixon, G. J.

Dunn, M. H.

A. I. Ferguson, M. H. Dunn, “Intracavity Second-Harmonic Generation in Continuous-Wave Dye Lasers,” IEEE J. Quantum Electron. QE-13, 751 (1977).
[CrossRef]

Feichtner, J. D.

Feldman, B.

B. Feldman, R. Auyeung, D. Zielke, “Efficient Harmonic Generation of CO2 Laser Radiation in Thallium Arsenic Selenide,” in Technical Digest, International Laser Science Conference (Optical Society of America, Washington, DC, 1986), paper THJ7.

Ferguson, A. I.

A. I. Ferguson, M. H. Dunn, “Intracavity Second-Harmonic Generation in Continuous-Wave Dye Lasers,” IEEE J. Quantum Electron. QE-13, 751 (1977).
[CrossRef]

Gabel, C.

C. Gabel, M. Hercher, “A Continuous Tunable Source of Coherent UV Radiation,” IEEE J. Quantum Electron. QE-8, 850 (1972).
[CrossRef]

Garbuny, M.

T. Henningsen, M. Garbuny, Z. Kun, N. Singh, “Growth, Fabrication, and Test of Large TAS Crystals for Second Harmonic Generation,” Final Report contract N00014-84-C-2209 (1985).

Geusic, J.

J. Geusic, H. Levinstein, S. Singh, R. Smith, L. VanUitert, “A Continuous 0.53μm Solid-State Source Using Ba2NaNb5O15,” IEEE J. Quantum Electron. QE-4, 352 (1968).
[CrossRef]

Henningsen, T.

T. Henningsen, M. Garbuny, Z. Kun, N. Singh, “Growth, Fabrication, and Test of Large TAS Crystals for Second Harmonic Generation,” Final Report contract N00014-84-C-2209 (1985).

Hercher, M.

C. Gabel, M. Hercher, “A Continuous Tunable Source of Coherent UV Radiation,” IEEE J. Quantum Electron. QE-8, 850 (1972).
[CrossRef]

Kleinman, D. A.

G. D. Boyd, D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39, No. 8A3597 (1968).
[CrossRef]

Kun, Z.

T. Henningsen, M. Garbuny, Z. Kun, N. Singh, “Growth, Fabrication, and Test of Large TAS Crystals for Second Harmonic Generation,” Final Report contract N00014-84-C-2209 (1985).

Levinstein, H.

J. Geusic, H. Levinstein, S. Singh, R. Smith, L. VanUitert, “A Continuous 0.53μm Solid-State Source Using Ba2NaNb5O15,” IEEE J. Quantum Electron. QE-4, 352 (1968).
[CrossRef]

Pan, T. Y.

Roland, G. W.

Singh, N.

T. Henningsen, M. Garbuny, Z. Kun, N. Singh, “Growth, Fabrication, and Test of Large TAS Crystals for Second Harmonic Generation,” Final Report contract N00014-84-C-2209 (1985).

Singh, S.

J. Geusic, H. Levinstein, S. Singh, R. Smith, L. VanUitert, “A Continuous 0.53μm Solid-State Source Using Ba2NaNb5O15,” IEEE J. Quantum Electron. QE-4, 352 (1968).
[CrossRef]

Smith, R.

J. Geusic, H. Levinstein, S. Singh, R. Smith, L. VanUitert, “A Continuous 0.53μm Solid-State Source Using Ba2NaNb5O15,” IEEE J. Quantum Electron. QE-4, 352 (1968).
[CrossRef]

Smith, R. G.

R. G. Smith, “Theory of Intracavity Optical Second-Harmonic Generation,” IEEE J. Quantum Electron. QE-6, 215 (1970).
[CrossRef]

VanUitert, L.

J. Geusic, H. Levinstein, S. Singh, R. Smith, L. VanUitert, “A Continuous 0.53μm Solid-State Source Using Ba2NaNb5O15,” IEEE J. Quantum Electron. QE-4, 352 (1968).
[CrossRef]

Webster, C. R.

C. R. Webster, L. Woste, R. N. Zare, “Narrow-Band UV Radiation (250–260 nm) from Intracavity Doubling a Single-Mode Ring Dye Laser,” Opt. Commun. 35, 435 (1980).
[CrossRef]

Woste, L.

C. R. Webster, L. Woste, R. N. Zare, “Narrow-Band UV Radiation (250–260 nm) from Intracavity Doubling a Single-Mode Ring Dye Laser,” Opt. Commun. 35, 435 (1980).
[CrossRef]

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, New York, 1975).

Zare, R. N.

C. R. Webster, L. Woste, R. N. Zare, “Narrow-Band UV Radiation (250–260 nm) from Intracavity Doubling a Single-Mode Ring Dye Laser,” Opt. Commun. 35, 435 (1980).
[CrossRef]

Zielke, D.

B. Feldman, R. Auyeung, D. Zielke, “Efficient Harmonic Generation of CO2 Laser Radiation in Thallium Arsenic Selenide,” in Technical Digest, International Laser Science Conference (Optical Society of America, Washington, DC, 1986), paper THJ7.

Appl. Opt. (1)

IEEE J. Quantum Electron. (4)

J. Geusic, H. Levinstein, S. Singh, R. Smith, L. VanUitert, “A Continuous 0.53μm Solid-State Source Using Ba2NaNb5O15,” IEEE J. Quantum Electron. QE-4, 352 (1968).
[CrossRef]

A. I. Ferguson, M. H. Dunn, “Intracavity Second-Harmonic Generation in Continuous-Wave Dye Lasers,” IEEE J. Quantum Electron. QE-13, 751 (1977).
[CrossRef]

C. Gabel, M. Hercher, “A Continuous Tunable Source of Coherent UV Radiation,” IEEE J. Quantum Electron. QE-8, 850 (1972).
[CrossRef]

R. G. Smith, “Theory of Intracavity Optical Second-Harmonic Generation,” IEEE J. Quantum Electron. QE-6, 215 (1970).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd, D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39, No. 8A3597 (1968).
[CrossRef]

Opt. Commun. (1)

C. R. Webster, L. Woste, R. N. Zare, “Narrow-Band UV Radiation (250–260 nm) from Intracavity Doubling a Single-Mode Ring Dye Laser,” Opt. Commun. 35, 435 (1980).
[CrossRef]

Opt. Lett. (1)

Other (4)

B. Feldman, R. Auyeung, D. Zielke, “Efficient Harmonic Generation of CO2 Laser Radiation in Thallium Arsenic Selenide,” in Technical Digest, International Laser Science Conference (Optical Society of America, Washington, DC, 1986), paper THJ7.

A. Yariv, Quantum Electronics (Wiley, New York, 1975).

T. Henningsen, M. Garbuny, Z. Kun, N. Singh, “Growth, Fabrication, and Test of Large TAS Crystals for Second Harmonic Generation,” Final Report contract N00014-84-C-2209 (1985).

K. Deb, “Pulsed CO2 Laser Damage to Coated and Uncoated Thallium-Arsenic-Selenide,” Center for Night Vision and Electro-Optics, Internal Report DELNV-TR-0048 (1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Second harmonic generation efficiency of thallium-arsenic-selenide crystal (from Ref. 5).

Fig. 2
Fig. 2

Schematic of intracavity doubling experiment.

Fig. 3
Fig. 3

Diagram of laser energy flow (a) with the intracavity doubling crystal, (b) without the doubling crystal.

Tables (1)

Tables Icon

Table I Results and Calculations for Intracavity Doubling Experiment

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E 3 = E 2 [ 1 - ( l + η ) ] , E 4 = E 3 [ 1 - T ] , E 5 = E 4 [ 1 - ( l + η ) ] .
E 2 - E 5 E 2 = T + 2 ( 1 + T ) ( l + η ) - ( 1 - l ) ( l + η ) 2 .

Metrics