Abstract

This paper describes the implementation of an efficient and accurate multiple scattering parameterization within the lowtran and fascode transmittance/radiance models. The parameterization is based on a stream approximation in which the local radiance field needed to evaluate the multiple scattering source function is estimated from the local radiation fluxes. The latter are calculated based on a parameterized two-flux for individual layers and an adding method for combining layers. Because of the line-by-line nature of fascode, it is straightforward to implement the multiple scattering treatment. For lowtran, an interface scheme was developedusing the k-distribution method to match the multiple scattering approach to the band model calculation of gas absorption. The interface scheme represents the lowtran band model by a sum of pseudomonochromatic calculations. The approach is valid for any band model for which k-distribution parameters can be evaluated. The accuracy of the multiple scattering parameterization has been demonstrated by comparing it with more detailed calculations for a variety of atmospheric conditions. RMS errors in radiance considering all possible viewing angles are <20%. In addition, to insure consistency between models, overlapping lowtran and fascode spectral regions are compared. Finally, it is demonstrated that the implemented multiple scattering parameterization corrects lowtran’s previous underestimation of path radiance for long horizon paths where multiple scattering is significant.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription