Abstract

The stress properties of GeO2- and F-doped optical fibers drawn in different conditions have been investigated. The results are in excellent agreement with calculated data based on a generalized theoretical model. For constant drawing forces the influence on the stress profiles was found to be independent of drawing speed and temperature. The total observed stress is the sum of preform stress and drawing-induced stress.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Bachmann, W. Hermann, H. Wehr, D. U. Wiechert, “Stress in Optical Waveguides. 1: Preforms,” Appl. Opt. 25, 1093 (1986).
    [CrossRef] [PubMed]
  2. S. Timoshenko, J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).
  3. G. W. Scherer, “Stress-Optical Effects in Optical Waveguides,” J. Non-Cryst. Solids 38/39, 201 (1980).
    [CrossRef]
  4. W. Primak, D. Post, “Photoelastic Constants of Vitreous Silicon and Its Elastic Coefficient at Refractive Index,” J. Appl. Phys. 30, 779 (1959).
    [CrossRef]
  5. G. W. Scherer, A. R. Cooper, “Thermal Stresses in Clad-Glass Fibers,” J. Am. Ceram. Soc. 63, 346 (1980).
    [CrossRef]
  6. U. C. Paek, C. R. Kurkjian, “Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibers,” J. Am. Ceram. Soc. 58, 330 (1975).
    [CrossRef]
  7. L. Rongved, C. R. Kurkjian, F. T. Geyling, “Mechanical Tempering of Optical Fibers,” J. Non-Cryst. Solids 42, 579 (1980).
    [CrossRef]
  8. P. L. Chu, T. Whitbread, “Measurement of Stresses in Optical Fiber and Preform,” Appl. Opt. 21, 4241 (1982).
    [CrossRef] [PubMed]
  9. P. Geittner, D. Kuppers, H. Lydtin, “Low-Loss Optical Fibres Prepared by Plasma Activated CVD,” Appl. Phys. Lett. 28, 645 (1976).
    [CrossRef]
  10. P. K. Bachmann, “Review on Plasma Deposition Applications: Preparation of Optical Waveguides,” Pure Appl. Chem. 57, 1299 (1985).
    [CrossRef]
  11. P. K. Bachmann, P. Geittner, H. Lydtin, “Progress in the PCVD Process,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper WA1.
  12. Y. Y. Huang, H. Sarkar, “Relationship Between Composition, Density and Refractive Index for Germania Silica Glasses,” J. Non-Cryst. Solids 27, 29 (1978).
    [CrossRef]
  13. S. E. Miller, A. G. Chynoweth, Optical Telecommunications (Academic, New York, 1979).
  14. P. K. Bachmann, T. P. M. Meeuwsen, D. U. Wiechert, “Thermal Expansion Coefficients of Doped and Undoped Silica Prepared by Means of PCVD,” J. Lightwave Techn. (1987), to be published.
  15. A. Muhlich, K. Rau, N. Treber, “Preparation of Fluorine Doped Silica Preforms by Plasma Chemical Technique,” in Technical Digest, Third European Conference on Optical Communications, Munich (1977), p. 10.

1986 (1)

1985 (1)

P. K. Bachmann, “Review on Plasma Deposition Applications: Preparation of Optical Waveguides,” Pure Appl. Chem. 57, 1299 (1985).
[CrossRef]

1982 (1)

1980 (3)

L. Rongved, C. R. Kurkjian, F. T. Geyling, “Mechanical Tempering of Optical Fibers,” J. Non-Cryst. Solids 42, 579 (1980).
[CrossRef]

G. W. Scherer, “Stress-Optical Effects in Optical Waveguides,” J. Non-Cryst. Solids 38/39, 201 (1980).
[CrossRef]

G. W. Scherer, A. R. Cooper, “Thermal Stresses in Clad-Glass Fibers,” J. Am. Ceram. Soc. 63, 346 (1980).
[CrossRef]

1978 (1)

Y. Y. Huang, H. Sarkar, “Relationship Between Composition, Density and Refractive Index for Germania Silica Glasses,” J. Non-Cryst. Solids 27, 29 (1978).
[CrossRef]

1976 (1)

P. Geittner, D. Kuppers, H. Lydtin, “Low-Loss Optical Fibres Prepared by Plasma Activated CVD,” Appl. Phys. Lett. 28, 645 (1976).
[CrossRef]

1975 (1)

U. C. Paek, C. R. Kurkjian, “Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibers,” J. Am. Ceram. Soc. 58, 330 (1975).
[CrossRef]

1959 (1)

W. Primak, D. Post, “Photoelastic Constants of Vitreous Silicon and Its Elastic Coefficient at Refractive Index,” J. Appl. Phys. 30, 779 (1959).
[CrossRef]

Bachmann, P. K.

P. K. Bachmann, W. Hermann, H. Wehr, D. U. Wiechert, “Stress in Optical Waveguides. 1: Preforms,” Appl. Opt. 25, 1093 (1986).
[CrossRef] [PubMed]

P. K. Bachmann, “Review on Plasma Deposition Applications: Preparation of Optical Waveguides,” Pure Appl. Chem. 57, 1299 (1985).
[CrossRef]

P. K. Bachmann, T. P. M. Meeuwsen, D. U. Wiechert, “Thermal Expansion Coefficients of Doped and Undoped Silica Prepared by Means of PCVD,” J. Lightwave Techn. (1987), to be published.

P. K. Bachmann, P. Geittner, H. Lydtin, “Progress in the PCVD Process,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper WA1.

Chu, P. L.

Chynoweth, A. G.

S. E. Miller, A. G. Chynoweth, Optical Telecommunications (Academic, New York, 1979).

Cooper, A. R.

G. W. Scherer, A. R. Cooper, “Thermal Stresses in Clad-Glass Fibers,” J. Am. Ceram. Soc. 63, 346 (1980).
[CrossRef]

Geittner, P.

P. Geittner, D. Kuppers, H. Lydtin, “Low-Loss Optical Fibres Prepared by Plasma Activated CVD,” Appl. Phys. Lett. 28, 645 (1976).
[CrossRef]

P. K. Bachmann, P. Geittner, H. Lydtin, “Progress in the PCVD Process,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper WA1.

Geyling, F. T.

L. Rongved, C. R. Kurkjian, F. T. Geyling, “Mechanical Tempering of Optical Fibers,” J. Non-Cryst. Solids 42, 579 (1980).
[CrossRef]

Goodier, J. N.

S. Timoshenko, J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).

Hermann, W.

Huang, Y. Y.

Y. Y. Huang, H. Sarkar, “Relationship Between Composition, Density and Refractive Index for Germania Silica Glasses,” J. Non-Cryst. Solids 27, 29 (1978).
[CrossRef]

Kuppers, D.

P. Geittner, D. Kuppers, H. Lydtin, “Low-Loss Optical Fibres Prepared by Plasma Activated CVD,” Appl. Phys. Lett. 28, 645 (1976).
[CrossRef]

Kurkjian, C. R.

L. Rongved, C. R. Kurkjian, F. T. Geyling, “Mechanical Tempering of Optical Fibers,” J. Non-Cryst. Solids 42, 579 (1980).
[CrossRef]

U. C. Paek, C. R. Kurkjian, “Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibers,” J. Am. Ceram. Soc. 58, 330 (1975).
[CrossRef]

Lydtin, H.

P. Geittner, D. Kuppers, H. Lydtin, “Low-Loss Optical Fibres Prepared by Plasma Activated CVD,” Appl. Phys. Lett. 28, 645 (1976).
[CrossRef]

P. K. Bachmann, P. Geittner, H. Lydtin, “Progress in the PCVD Process,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper WA1.

Meeuwsen, T. P. M.

P. K. Bachmann, T. P. M. Meeuwsen, D. U. Wiechert, “Thermal Expansion Coefficients of Doped and Undoped Silica Prepared by Means of PCVD,” J. Lightwave Techn. (1987), to be published.

Miller, S. E.

S. E. Miller, A. G. Chynoweth, Optical Telecommunications (Academic, New York, 1979).

Muhlich, A.

A. Muhlich, K. Rau, N. Treber, “Preparation of Fluorine Doped Silica Preforms by Plasma Chemical Technique,” in Technical Digest, Third European Conference on Optical Communications, Munich (1977), p. 10.

Paek, U. C.

U. C. Paek, C. R. Kurkjian, “Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibers,” J. Am. Ceram. Soc. 58, 330 (1975).
[CrossRef]

Post, D.

W. Primak, D. Post, “Photoelastic Constants of Vitreous Silicon and Its Elastic Coefficient at Refractive Index,” J. Appl. Phys. 30, 779 (1959).
[CrossRef]

Primak, W.

W. Primak, D. Post, “Photoelastic Constants of Vitreous Silicon and Its Elastic Coefficient at Refractive Index,” J. Appl. Phys. 30, 779 (1959).
[CrossRef]

Rau, K.

A. Muhlich, K. Rau, N. Treber, “Preparation of Fluorine Doped Silica Preforms by Plasma Chemical Technique,” in Technical Digest, Third European Conference on Optical Communications, Munich (1977), p. 10.

Rongved, L.

L. Rongved, C. R. Kurkjian, F. T. Geyling, “Mechanical Tempering of Optical Fibers,” J. Non-Cryst. Solids 42, 579 (1980).
[CrossRef]

Sarkar, H.

Y. Y. Huang, H. Sarkar, “Relationship Between Composition, Density and Refractive Index for Germania Silica Glasses,” J. Non-Cryst. Solids 27, 29 (1978).
[CrossRef]

Scherer, G. W.

G. W. Scherer, A. R. Cooper, “Thermal Stresses in Clad-Glass Fibers,” J. Am. Ceram. Soc. 63, 346 (1980).
[CrossRef]

G. W. Scherer, “Stress-Optical Effects in Optical Waveguides,” J. Non-Cryst. Solids 38/39, 201 (1980).
[CrossRef]

Timoshenko, S.

S. Timoshenko, J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).

Treber, N.

A. Muhlich, K. Rau, N. Treber, “Preparation of Fluorine Doped Silica Preforms by Plasma Chemical Technique,” in Technical Digest, Third European Conference on Optical Communications, Munich (1977), p. 10.

Wehr, H.

Whitbread, T.

Wiechert, D. U.

P. K. Bachmann, W. Hermann, H. Wehr, D. U. Wiechert, “Stress in Optical Waveguides. 1: Preforms,” Appl. Opt. 25, 1093 (1986).
[CrossRef] [PubMed]

P. K. Bachmann, T. P. M. Meeuwsen, D. U. Wiechert, “Thermal Expansion Coefficients of Doped and Undoped Silica Prepared by Means of PCVD,” J. Lightwave Techn. (1987), to be published.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. Geittner, D. Kuppers, H. Lydtin, “Low-Loss Optical Fibres Prepared by Plasma Activated CVD,” Appl. Phys. Lett. 28, 645 (1976).
[CrossRef]

J. Am. Ceram. Soc. (2)

G. W. Scherer, A. R. Cooper, “Thermal Stresses in Clad-Glass Fibers,” J. Am. Ceram. Soc. 63, 346 (1980).
[CrossRef]

U. C. Paek, C. R. Kurkjian, “Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibers,” J. Am. Ceram. Soc. 58, 330 (1975).
[CrossRef]

J. Appl. Phys. (1)

W. Primak, D. Post, “Photoelastic Constants of Vitreous Silicon and Its Elastic Coefficient at Refractive Index,” J. Appl. Phys. 30, 779 (1959).
[CrossRef]

J. Non-Cryst. Solids (3)

G. W. Scherer, “Stress-Optical Effects in Optical Waveguides,” J. Non-Cryst. Solids 38/39, 201 (1980).
[CrossRef]

L. Rongved, C. R. Kurkjian, F. T. Geyling, “Mechanical Tempering of Optical Fibers,” J. Non-Cryst. Solids 42, 579 (1980).
[CrossRef]

Y. Y. Huang, H. Sarkar, “Relationship Between Composition, Density and Refractive Index for Germania Silica Glasses,” J. Non-Cryst. Solids 27, 29 (1978).
[CrossRef]

Pure Appl. Chem. (1)

P. K. Bachmann, “Review on Plasma Deposition Applications: Preparation of Optical Waveguides,” Pure Appl. Chem. 57, 1299 (1985).
[CrossRef]

Other (5)

P. K. Bachmann, P. Geittner, H. Lydtin, “Progress in the PCVD Process,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper WA1.

S. Timoshenko, J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).

S. E. Miller, A. G. Chynoweth, Optical Telecommunications (Academic, New York, 1979).

P. K. Bachmann, T. P. M. Meeuwsen, D. U. Wiechert, “Thermal Expansion Coefficients of Doped and Undoped Silica Prepared by Means of PCVD,” J. Lightwave Techn. (1987), to be published.

A. Muhlich, K. Rau, N. Treber, “Preparation of Fluorine Doped Silica Preforms by Plasma Chemical Technique,” in Technical Digest, Third European Conference on Optical Communications, Munich (1977), p. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup for determining stress profiles in fibers.

Fig. 2
Fig. 2

Axial stress profile of fibers, drawn with increasing drawing force (a)—(d); (a) is the downscaled stress profile of the corresponding preform.

Fig. 3
Fig. 3

Refractive-index profile of the preform shown in Fig. 2.

Fig. 4
Fig. 4

Measured axial stress of the WG material of two different fiber sets vs drawing force.

Fig. 5
Fig. 5

Axial stress difference between undoped PCVD SiO2 (upper part) and GeO2-doped SiO2 (lower part) and natural quartz vs drawing force.

Fig. 6
Fig. 6

Axial stress difference of undoped PCVD SiO2 and natural quartz vs drawing force for different temperatures.

Fig. 7
Fig. 7

Axial stress level of the WG SiO2 vs drawing force for (a) the original fiber set corresponding to Fig. 2 and (b) the fiber set after the RIT experiment.

Fig. 8
Fig. 8

Axial stress difference of GeO2-doped PCVD SiO2 and WG quartz vs relative-index difference with different drawing stress γ = F/AWG. The solid line corresponds to preform data.

Fig. 9
Fig. 9

Viscosity ratios calculated from stress measurements on five different fiber sets vs relative-index difference.

Fig. 10
Fig. 10

Axial stress difference of F-doped PCVD SiO2 and WG quartz vs relative-index difference for different drawing tensions γ = F/AWG. The solid line corresponds to preform data; the dashed line corresponds to extrapolated data with γ = 0.

Fig. 11
Fig. 11

Mechanically induced residual stress difference in F-doped PCVD quartz vs relative-index difference as a function of drawing stress. The dashed lines are calculated data using E(Δ) = const.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

σ z th = T room T * E ( T ) 1 - ν ( T ) [ α ( r , T ) - c ( T ) ] d T ,
c ( T ) = 0 R α ( r , T ) r d r .
σ z , Cl h y = K [ α Cl - α Co * ] ( T Cl * - T Co * ) .
σ j i η j = σ n i η n = const ,
ɛ j i - ɛ j f = ɛ n i - ɛ n f = const ,
j = 1 n A j σ j f = 0 ,
j = 1 n A j σ j i = F .
ɛ j k = σ j k E j k ,             k = i , f , 1 j n ,
α j f = F ( η j η n 1 i A i η i η n - E j E n 1 i A i E i E n ) .
σ n f = F ( 1 i A i η i η n - 1 i A i E i E n ) .
σ j f - σ n f = F ( η i η n - 1 i A i η i η n - E j E n - 1 i A i E i E n ) .
σ 1 f = F ( η 1 A 2 η 1 + A 2 η 2 - E 1 A 1 E 1 + A 2 E 2 ) ,
σ 2 f = F ( η 2 A 1 η 1 + A 2 η 2 - E 2 A 1 E 1 + A 2 E 2 ) .
P σ z , tot = σ z r d r σ z r d r ,
Δ = n doped - n WG n WG
σ z ( WG ) F = 1 η - 1 E ,
η = i A i η i η n ;             E = i A i E i E n ,
σ z ( WG ) RIT F = 1 η · φ + A WG RIT - 1 E · φ + A WG RIT ,
φ = A RIT - A WG RIT A orig ,
A WG RIT = 5.8 × 10 - 3 mm 2 ,
E = 17.5 × 10 - 3 mm 2 , A orig = 17.6 × 10 - 3 mm 2 , η = 10.9 × 10 - 3 mm 2 , A WG orig = 10.4 × 10 - 3 mm 2 .
Δ σ z = ( σ j - σ WG ) = F A WG ( η j η WG - 1 ) .
γ = F A WG ( N mm 2 ) ,
A WG = i η i η WG A i
i A i η i η n = A WG , 1 - E i E n = 0 ,
[ η ( Δ ) η WG - 1 ]
[ E ( Δ ) E WG - 1 ] .
E ( Δ ) E WG - 1

Metrics