Abstract

A technique is described which allows the thickness of each layer in a layered synthetic microstructure to yield a useful constant efficiency over a broad band of wavelengths, several hundred angstroms wide, in the soft x-ray and EUV wavebands.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Meekins, R. G. Cruddace, H. Gursky, “Optimization of Layered Synthetic Microstructures for Narrowband Reflectivity at Soft X-Ray and EUV Wavelengths,” Appl. Opt. 25, 2757 (1986).
    [CrossRef] [PubMed]
  2. W. R. Hunter, Sachs/Freeman Associates, Inc.; private communication (1984).
  3. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
    [CrossRef]
  4. G. Hass, W. R. Hunter, “New Developments in Vacuum-Ultraviolet Reflection Coatings for Space Astronomy,” in Space Optics, Proceedings, Ninth International Congress of the International Commission for Optics, Santa Monica, CA, 1972, B. J. Thompson, R. R. Shannon, Eds. (National Academy of Sciences, Washington, DC, 1974), p. 525.
  5. M. Born, E. Wolf, Principles of Optics—Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, Oxford, 1980), p. 616.
  6. E. Spiller, “Multilayer Interference Coatings for the Vacuum Ultraviolet,” in Space Optics, Proceedings, Ninth International Congress of the International Commission for Optics, Santa Monica, CA, 1972, B. J. Thompson, R. R. Shannon, Eds. (National Academy of Sciences, Washington, DC, 1974), p. 581.

1986 (1)

1982 (1)

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics—Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, Oxford, 1980), p. 616.

Cruddace, R. G.

Fujikawa, B. K.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Gursky, H.

Hass, G.

G. Hass, W. R. Hunter, “New Developments in Vacuum-Ultraviolet Reflection Coatings for Space Astronomy,” in Space Optics, Proceedings, Ninth International Congress of the International Commission for Optics, Santa Monica, CA, 1972, B. J. Thompson, R. R. Shannon, Eds. (National Academy of Sciences, Washington, DC, 1974), p. 525.

Henke, B. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Hunter, W. R.

W. R. Hunter, Sachs/Freeman Associates, Inc.; private communication (1984).

G. Hass, W. R. Hunter, “New Developments in Vacuum-Ultraviolet Reflection Coatings for Space Astronomy,” in Space Optics, Proceedings, Ninth International Congress of the International Commission for Optics, Santa Monica, CA, 1972, B. J. Thompson, R. R. Shannon, Eds. (National Academy of Sciences, Washington, DC, 1974), p. 525.

Lee, P.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Meekins, J. F.

Shimabukuro, R. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Spiller, E.

E. Spiller, “Multilayer Interference Coatings for the Vacuum Ultraviolet,” in Space Optics, Proceedings, Ninth International Congress of the International Commission for Optics, Santa Monica, CA, 1972, B. J. Thompson, R. R. Shannon, Eds. (National Academy of Sciences, Washington, DC, 1974), p. 581.

Tanaka, T. J.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics—Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, Oxford, 1980), p. 616.

Appl. Opt. (1)

At. Data Nucl. Data Tables (1)

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Other (4)

G. Hass, W. R. Hunter, “New Developments in Vacuum-Ultraviolet Reflection Coatings for Space Astronomy,” in Space Optics, Proceedings, Ninth International Congress of the International Commission for Optics, Santa Monica, CA, 1972, B. J. Thompson, R. R. Shannon, Eds. (National Academy of Sciences, Washington, DC, 1974), p. 525.

M. Born, E. Wolf, Principles of Optics—Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, Oxford, 1980), p. 616.

E. Spiller, “Multilayer Interference Coatings for the Vacuum Ultraviolet,” in Space Optics, Proceedings, Ninth International Congress of the International Commission for Optics, Santa Monica, CA, 1972, B. J. Thompson, R. R. Shannon, Eds. (National Academy of Sciences, Washington, DC, 1974), p. 581.

W. R. Hunter, Sachs/Freeman Associates, Inc.; private communication (1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Reflectivity of a seven-layer iridium–silicon LSM optimized for normally incident 300–600-Å radiation.

Fig. 2
Fig. 2

Reflectivities of seven-layer iridium–silicon LSMs for radiation incident at 20° and for three polarization modes: (a) LSM optimized over the 300–600-Å wave band for 20° angle of incidence; (b) LSM optimized over the 300–600-Å wave band for normal incidence (LSM design of Fig. 1).

Fig. 3
Fig. 3

Reflectivity of a seventeen-layer platinum–silicon LSM optimized for normally incident 100–300-Å radiation.

Fig. 4
Fig. 4

Reflectivities of seventeen-layer platinum–silicon LSMs for radiation incident at 20° and for three polarization modes: (a) LSM optimized over the 100–300-Å wave band for 20°, angle of incidence; (b) LSM optimized over the 100–300-Å wave band for normal incidence (LSM design of Fig. 3).

Fig. 5
Fig. 5

Reflectivities of a seven-layer platinum–silicon LSM optimized for 100–300-Å radiation with an angle of incidence of 60°.

Tables (3)

Tables Icon

Table I Optical Constants, Critical Angles, and Penetration Depths for Silicon, Iridium, and Platinum

Tables Icon

Table II Film Thicknesses of Iridium–Silicon LSM Optimized for the 300–600-Å Band

Tables Icon

Table III Film Thicknesses of Platinum–silicon LSM optimized for the 100–300-Å Band

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

sin 2 θ c = n 2 - k 2 .
ρ 2 = λ ( R max - R λ ) 4 ,

Metrics