Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Lencioni, “Laser Induced Air Breakdown for 1.06 μm Radiation,” Appl. Phys. Lett. 25, 15 (1974).
    [Crossref]
  2. P. Woskoboinikow, W. J. Mulligan, H. C. Praddaude, D. R. Cohn, “Submillimeter-Laser-Induced Air Breakdown,” Appl. Phys. Lett. 32, 527 (1973).
    [Crossref]
  3. F. V. Grigorev, V. V. Kalinovskii, S. B. Kormer, L. M. Lavrov, G. A. Mishuchkov, “Breakdown of Air by Laser Radiation with a Wavelength of 10 μm,” Sov. Phys. Tech. Phys. 27, 577 (1982).
  4. D. C. Smith, R. T. Brown, “Aerosol-Induced Air Breakdown with CO2 Laser Radiation,” J. Appl. Phys. 46, 1146 (1975).
    [Crossref]
  5. V. N. Pozhidaev, A. I. Fatievskii, “Optical Breakdown Thresholds in Liquid Water and Micron Size Water Droplets Exposed to Single Laser Pulses,” Sov. J. Quantum Electron. 11, 65 (1981).
    [Crossref]
  6. P. Chýlek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, “Effect of Size and Material of Liquid Spherical Particles on Laser-Induced Breakdown,” Appl. Phys. Lett. 49, 1475 (Nov.1986).
    [Crossref]
  7. P. Chýlek, J. D. Pendleton, R. G. Pinnick, “Internal and Near-Surface Scattering Field of a Spherical Particle at Resonant Conditions,” Appl. Opt. 24, 3940 (1985).
    [Crossref] [PubMed]
  8. J. H. Eickmans, W. F. Hsieh, R. K. Chang, “Laser-Induced Explosion of H2O Droplets: Spatially Resolved Spectra,” Opt. Lett. 12, 22 (1987).
    [Crossref] [PubMed]
  9. J. F. Ready, Effects of High Power Laser Radiation (Academic, New York, 1971).

1987 (1)

1986 (1)

P. Chýlek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, “Effect of Size and Material of Liquid Spherical Particles on Laser-Induced Breakdown,” Appl. Phys. Lett. 49, 1475 (Nov.1986).
[Crossref]

1985 (1)

1982 (1)

F. V. Grigorev, V. V. Kalinovskii, S. B. Kormer, L. M. Lavrov, G. A. Mishuchkov, “Breakdown of Air by Laser Radiation with a Wavelength of 10 μm,” Sov. Phys. Tech. Phys. 27, 577 (1982).

1981 (1)

V. N. Pozhidaev, A. I. Fatievskii, “Optical Breakdown Thresholds in Liquid Water and Micron Size Water Droplets Exposed to Single Laser Pulses,” Sov. J. Quantum Electron. 11, 65 (1981).
[Crossref]

1975 (1)

D. C. Smith, R. T. Brown, “Aerosol-Induced Air Breakdown with CO2 Laser Radiation,” J. Appl. Phys. 46, 1146 (1975).
[Crossref]

1974 (1)

D. E. Lencioni, “Laser Induced Air Breakdown for 1.06 μm Radiation,” Appl. Phys. Lett. 25, 15 (1974).
[Crossref]

1973 (1)

P. Woskoboinikow, W. J. Mulligan, H. C. Praddaude, D. R. Cohn, “Submillimeter-Laser-Induced Air Breakdown,” Appl. Phys. Lett. 32, 527 (1973).
[Crossref]

Brown, R. T.

D. C. Smith, R. T. Brown, “Aerosol-Induced Air Breakdown with CO2 Laser Radiation,” J. Appl. Phys. 46, 1146 (1975).
[Crossref]

Chang, R. K.

Chou, N. Y.

P. Chýlek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, “Effect of Size and Material of Liquid Spherical Particles on Laser-Induced Breakdown,” Appl. Phys. Lett. 49, 1475 (Nov.1986).
[Crossref]

Chýlek, P.

P. Chýlek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, “Effect of Size and Material of Liquid Spherical Particles on Laser-Induced Breakdown,” Appl. Phys. Lett. 49, 1475 (Nov.1986).
[Crossref]

P. Chýlek, J. D. Pendleton, R. G. Pinnick, “Internal and Near-Surface Scattering Field of a Spherical Particle at Resonant Conditions,” Appl. Opt. 24, 3940 (1985).
[Crossref] [PubMed]

Cohn, D. R.

P. Woskoboinikow, W. J. Mulligan, H. C. Praddaude, D. R. Cohn, “Submillimeter-Laser-Induced Air Breakdown,” Appl. Phys. Lett. 32, 527 (1973).
[Crossref]

Eickmans, J. H.

Fatievskii, A. I.

V. N. Pozhidaev, A. I. Fatievskii, “Optical Breakdown Thresholds in Liquid Water and Micron Size Water Droplets Exposed to Single Laser Pulses,” Sov. J. Quantum Electron. 11, 65 (1981).
[Crossref]

Grigorev, F. V.

F. V. Grigorev, V. V. Kalinovskii, S. B. Kormer, L. M. Lavrov, G. A. Mishuchkov, “Breakdown of Air by Laser Radiation with a Wavelength of 10 μm,” Sov. Phys. Tech. Phys. 27, 577 (1982).

Hsieh, W. F.

Jarzembski, M. A.

P. Chýlek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, “Effect of Size and Material of Liquid Spherical Particles on Laser-Induced Breakdown,” Appl. Phys. Lett. 49, 1475 (Nov.1986).
[Crossref]

Kalinovskii, V. V.

F. V. Grigorev, V. V. Kalinovskii, S. B. Kormer, L. M. Lavrov, G. A. Mishuchkov, “Breakdown of Air by Laser Radiation with a Wavelength of 10 μm,” Sov. Phys. Tech. Phys. 27, 577 (1982).

Kormer, S. B.

F. V. Grigorev, V. V. Kalinovskii, S. B. Kormer, L. M. Lavrov, G. A. Mishuchkov, “Breakdown of Air by Laser Radiation with a Wavelength of 10 μm,” Sov. Phys. Tech. Phys. 27, 577 (1982).

Lavrov, L. M.

F. V. Grigorev, V. V. Kalinovskii, S. B. Kormer, L. M. Lavrov, G. A. Mishuchkov, “Breakdown of Air by Laser Radiation with a Wavelength of 10 μm,” Sov. Phys. Tech. Phys. 27, 577 (1982).

Lencioni, D. E.

D. E. Lencioni, “Laser Induced Air Breakdown for 1.06 μm Radiation,” Appl. Phys. Lett. 25, 15 (1974).
[Crossref]

Mishuchkov, G. A.

F. V. Grigorev, V. V. Kalinovskii, S. B. Kormer, L. M. Lavrov, G. A. Mishuchkov, “Breakdown of Air by Laser Radiation with a Wavelength of 10 μm,” Sov. Phys. Tech. Phys. 27, 577 (1982).

Mulligan, W. J.

P. Woskoboinikow, W. J. Mulligan, H. C. Praddaude, D. R. Cohn, “Submillimeter-Laser-Induced Air Breakdown,” Appl. Phys. Lett. 32, 527 (1973).
[Crossref]

Pendleton, J. D.

Pinnick, R. G.

P. Chýlek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, “Effect of Size and Material of Liquid Spherical Particles on Laser-Induced Breakdown,” Appl. Phys. Lett. 49, 1475 (Nov.1986).
[Crossref]

P. Chýlek, J. D. Pendleton, R. G. Pinnick, “Internal and Near-Surface Scattering Field of a Spherical Particle at Resonant Conditions,” Appl. Opt. 24, 3940 (1985).
[Crossref] [PubMed]

Pozhidaev, V. N.

V. N. Pozhidaev, A. I. Fatievskii, “Optical Breakdown Thresholds in Liquid Water and Micron Size Water Droplets Exposed to Single Laser Pulses,” Sov. J. Quantum Electron. 11, 65 (1981).
[Crossref]

Praddaude, H. C.

P. Woskoboinikow, W. J. Mulligan, H. C. Praddaude, D. R. Cohn, “Submillimeter-Laser-Induced Air Breakdown,” Appl. Phys. Lett. 32, 527 (1973).
[Crossref]

Ready, J. F.

J. F. Ready, Effects of High Power Laser Radiation (Academic, New York, 1971).

Smith, D. C.

D. C. Smith, R. T. Brown, “Aerosol-Induced Air Breakdown with CO2 Laser Radiation,” J. Appl. Phys. 46, 1146 (1975).
[Crossref]

Woskoboinikow, P.

P. Woskoboinikow, W. J. Mulligan, H. C. Praddaude, D. R. Cohn, “Submillimeter-Laser-Induced Air Breakdown,” Appl. Phys. Lett. 32, 527 (1973).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

P. Chýlek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, “Effect of Size and Material of Liquid Spherical Particles on Laser-Induced Breakdown,” Appl. Phys. Lett. 49, 1475 (Nov.1986).
[Crossref]

D. E. Lencioni, “Laser Induced Air Breakdown for 1.06 μm Radiation,” Appl. Phys. Lett. 25, 15 (1974).
[Crossref]

P. Woskoboinikow, W. J. Mulligan, H. C. Praddaude, D. R. Cohn, “Submillimeter-Laser-Induced Air Breakdown,” Appl. Phys. Lett. 32, 527 (1973).
[Crossref]

J. Appl. Phys. (1)

D. C. Smith, R. T. Brown, “Aerosol-Induced Air Breakdown with CO2 Laser Radiation,” J. Appl. Phys. 46, 1146 (1975).
[Crossref]

Opt. Lett. (1)

Sov. J. Quantum Electron. (1)

V. N. Pozhidaev, A. I. Fatievskii, “Optical Breakdown Thresholds in Liquid Water and Micron Size Water Droplets Exposed to Single Laser Pulses,” Sov. J. Quantum Electron. 11, 65 (1981).
[Crossref]

Sov. Phys. Tech. Phys. (1)

F. V. Grigorev, V. V. Kalinovskii, S. B. Kormer, L. M. Lavrov, G. A. Mishuchkov, “Breakdown of Air by Laser Radiation with a Wavelength of 10 μm,” Sov. Phys. Tech. Phys. 27, 577 (1982).

Other (1)

J. F. Ready, Effects of High Power Laser Radiation (Academic, New York, 1971).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Example of a 2-D plot of the source function (ratio of the intensity I at considered point in an equatorial plane of a droplet to the intensity I0 of the incoming laser beam) inside and near the spherical droplet. The refractive index m = 1.47 and the size parameter x = 40.326. The largest enhancement of the field occurs just outside the droplet in the forward direction.

Fig. 2
Fig. 2

Experimental arrangement for the measurement of the breakdown threshold intensities of spherical droplets in various gases.

Fig. 3
Fig. 3

Schematic representation of our suggestion for the initiation and formation of the breakdown process. The breakdown occurs in a gas outside the droplet: (a) then the shock wave and/or the breakdown region propagates back toward the droplet (b) from where the observed plume is ejected (c) and (d). The ring around the droplet’s equatorial plane shows the stimulated Raman scattering.

Tables (1)

Tables Icon

Table I Threshold Intensitiesa

Metrics