Abstract

The effects of tilt and offset on the heterodyne efficiency are discussed for optical fields with Gaussian field distributions. An aperture is used in the input plane of the system to decrease the background noise which is incident on the signal. The numerical results show that in optimum conditions of the system and beam fields, the tilt must be less than ~10−4 deg and the offset about one-fifth of the input aperture to obtain more than 60% of the ideal values of the efficiency.

© 1987 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. E. Delange, “Optical Heterodyne Detection,” IEEE Spectrum 5, 77 (1968).
    [CrossRef]
  2. D. Fink, “Coherent Detection Signal-to-Noise Ratio,” Appl. Opt. 14, 689 (1975).
    [CrossRef] [PubMed]
  3. T. Takenaka, K. Tanaka, O. Fukumitsu, “Signal-to-Noise Ratio in Optical Heterodyne Detection for Gaussian Fields,” Appl. Opt. 17, 3466 (1978).
    [CrossRef] [PubMed]
  4. F. Favre et al., “Progress Towards Heterodyne-Type Single-Mode Fiber Communication Systems,” IEEE J. Quantum Electron. QE-17, 897 (1981).
    [CrossRef]
  5. S. Saito, Y. Yamamoto, T. Kimura, “S/N and Error Evaluation for an Optical FSK-Heterodyne Detection System Using Semiconductor Lasers,” IEEE J. Quantum Electron. QE-19, 180 (1983).
    [CrossRef]
  6. G. D. Boyd, H. Kogelnik, “Generalized Confocal Resonator Theory,” Bell Syst. Tech. J. 41, 1447 (1962).
  7. K. Tanaka, “Diffraction of an Obliquely Incident Wave Beam by a Rectangular Aperture,” Opt. Commun. 12, 168 (1974).
    [CrossRef]
  8. S. Silver, Microwave Antenna Theory and Design (McGraw-Hill, New York, 1941), p. 169.
  9. H. Kogelnik, A. Yariv, “Considerations of Noise and Schemes for Its Reduction in Laser Amplifier,” Proc. IEEE 52, 165 (1964).
    [CrossRef]
  10. K. Tanaka, N. Saga, “Maximum Heterodyne Efficiency of Optical Heterodyne Detection in the Presence of Background Radiation,” Appl. Opt. 23, 3901 (1984).
    [CrossRef] [PubMed]

1984

1983

S. Saito, Y. Yamamoto, T. Kimura, “S/N and Error Evaluation for an Optical FSK-Heterodyne Detection System Using Semiconductor Lasers,” IEEE J. Quantum Electron. QE-19, 180 (1983).
[CrossRef]

1981

F. Favre et al., “Progress Towards Heterodyne-Type Single-Mode Fiber Communication Systems,” IEEE J. Quantum Electron. QE-17, 897 (1981).
[CrossRef]

1978

1975

1974

K. Tanaka, “Diffraction of an Obliquely Incident Wave Beam by a Rectangular Aperture,” Opt. Commun. 12, 168 (1974).
[CrossRef]

1968

O. E. Delange, “Optical Heterodyne Detection,” IEEE Spectrum 5, 77 (1968).
[CrossRef]

1964

H. Kogelnik, A. Yariv, “Considerations of Noise and Schemes for Its Reduction in Laser Amplifier,” Proc. IEEE 52, 165 (1964).
[CrossRef]

1962

G. D. Boyd, H. Kogelnik, “Generalized Confocal Resonator Theory,” Bell Syst. Tech. J. 41, 1447 (1962).

Boyd, G. D.

G. D. Boyd, H. Kogelnik, “Generalized Confocal Resonator Theory,” Bell Syst. Tech. J. 41, 1447 (1962).

Delange, O. E.

O. E. Delange, “Optical Heterodyne Detection,” IEEE Spectrum 5, 77 (1968).
[CrossRef]

Favre, F.

F. Favre et al., “Progress Towards Heterodyne-Type Single-Mode Fiber Communication Systems,” IEEE J. Quantum Electron. QE-17, 897 (1981).
[CrossRef]

Fink, D.

Fukumitsu, O.

Kimura, T.

S. Saito, Y. Yamamoto, T. Kimura, “S/N and Error Evaluation for an Optical FSK-Heterodyne Detection System Using Semiconductor Lasers,” IEEE J. Quantum Electron. QE-19, 180 (1983).
[CrossRef]

Kogelnik, H.

H. Kogelnik, A. Yariv, “Considerations of Noise and Schemes for Its Reduction in Laser Amplifier,” Proc. IEEE 52, 165 (1964).
[CrossRef]

G. D. Boyd, H. Kogelnik, “Generalized Confocal Resonator Theory,” Bell Syst. Tech. J. 41, 1447 (1962).

Saga, N.

Saito, S.

S. Saito, Y. Yamamoto, T. Kimura, “S/N and Error Evaluation for an Optical FSK-Heterodyne Detection System Using Semiconductor Lasers,” IEEE J. Quantum Electron. QE-19, 180 (1983).
[CrossRef]

Silver, S.

S. Silver, Microwave Antenna Theory and Design (McGraw-Hill, New York, 1941), p. 169.

Takenaka, T.

Tanaka, K.

Yamamoto, Y.

S. Saito, Y. Yamamoto, T. Kimura, “S/N and Error Evaluation for an Optical FSK-Heterodyne Detection System Using Semiconductor Lasers,” IEEE J. Quantum Electron. QE-19, 180 (1983).
[CrossRef]

Yariv, A.

H. Kogelnik, A. Yariv, “Considerations of Noise and Schemes for Its Reduction in Laser Amplifier,” Proc. IEEE 52, 165 (1964).
[CrossRef]

Appl. Opt.

Bell Syst. Tech. J.

G. D. Boyd, H. Kogelnik, “Generalized Confocal Resonator Theory,” Bell Syst. Tech. J. 41, 1447 (1962).

IEEE J. Quantum Electron.

F. Favre et al., “Progress Towards Heterodyne-Type Single-Mode Fiber Communication Systems,” IEEE J. Quantum Electron. QE-17, 897 (1981).
[CrossRef]

S. Saito, Y. Yamamoto, T. Kimura, “S/N and Error Evaluation for an Optical FSK-Heterodyne Detection System Using Semiconductor Lasers,” IEEE J. Quantum Electron. QE-19, 180 (1983).
[CrossRef]

IEEE Spectrum

O. E. Delange, “Optical Heterodyne Detection,” IEEE Spectrum 5, 77 (1968).
[CrossRef]

Opt. Commun.

K. Tanaka, “Diffraction of an Obliquely Incident Wave Beam by a Rectangular Aperture,” Opt. Commun. 12, 168 (1974).
[CrossRef]

Proc. IEEE

H. Kogelnik, A. Yariv, “Considerations of Noise and Schemes for Its Reduction in Laser Amplifier,” Proc. IEEE 52, 165 (1964).
[CrossRef]

Other

S. Silver, Microwave Antenna Theory and Design (McGraw-Hill, New York, 1941), p. 169.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics