Abstract

A step frequency method (SFM) is proposed as a new scheme for an optical fiber fault locator. The principle of operation and significant features of the method are described. The feasibility was demonstrated by detecting the discontinuities in a 10-km long multimode fiber using the 830-nm wavelength. The results demonstrate the feasibility of using the SFM in practical fiber optical networks.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. L. Danielson, “Optical Time-Domain Reflectometer Specifications and Performance Testing,” Appl. Opt. 24, 2313 (1985).
    [CrossRef] [PubMed]
  2. K. Iizuka, A. P. Freundorfer, “Detection of Nonmetallic Object by a Step Frequency Radar,” Proc. IEEE 71, 276 (1983); see also P. Krotky, “Fiber Optic Fault Locator,” U. Toronto B.S. Thesis (1981).
    [CrossRef]
  3. K. lizuka, A. P. Freundorfer, K. H. Wu, H. Mori, H. Ogura, V. Nguyen, “Step-Frequency Radar,” J. Appl. Phys. 56, 2573 (1984).
  4. K. lizuka, Engineering Optics (Springer-Verlag, New York, 1985).
  5. F. J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” Proc. IEEE 66, 51 (1978).
    [CrossRef]
  6. E.-G. Neumann, “Optical Time Domain Reflectometer: Comment,” Appl. Opt. 17, 1675 (1978).
    [CrossRef] [PubMed]
  7. A. R. Mickelson, M. Eriksrud, “Theory of the Backscattering Process in Multimode Optical Fibers,” Appl. Opt. 21, 1898 (1982).
    [CrossRef] [PubMed]
  8. A. H. Hartog, M. P. Gold, “On the Theory of Backscattering in Single-Mode Optical Fibers,” IEEE/OSA J. Lightwave Technol. LT-2, 76 (1984).
    [CrossRef]
  9. F. P. Kapron, D. G. Kneller, P. M. Garel-Jones, “Aspects of Optical Frequency-Domain Reflectometry,” in Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1981), paper WF2.
  10. R. I. MacDonald, “Frequency Domain Optical Reflectometer,” Appl. Opt. 20, 1840 (1981).
    [CrossRef] [PubMed]

1985 (1)

1984 (2)

K. lizuka, A. P. Freundorfer, K. H. Wu, H. Mori, H. Ogura, V. Nguyen, “Step-Frequency Radar,” J. Appl. Phys. 56, 2573 (1984).

A. H. Hartog, M. P. Gold, “On the Theory of Backscattering in Single-Mode Optical Fibers,” IEEE/OSA J. Lightwave Technol. LT-2, 76 (1984).
[CrossRef]

1983 (1)

K. Iizuka, A. P. Freundorfer, “Detection of Nonmetallic Object by a Step Frequency Radar,” Proc. IEEE 71, 276 (1983); see also P. Krotky, “Fiber Optic Fault Locator,” U. Toronto B.S. Thesis (1981).
[CrossRef]

1982 (1)

1981 (1)

1978 (2)

F. J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” Proc. IEEE 66, 51 (1978).
[CrossRef]

E.-G. Neumann, “Optical Time Domain Reflectometer: Comment,” Appl. Opt. 17, 1675 (1978).
[CrossRef] [PubMed]

Danielson, B. L.

Eriksrud, M.

Freundorfer, A. P.

K. lizuka, A. P. Freundorfer, K. H. Wu, H. Mori, H. Ogura, V. Nguyen, “Step-Frequency Radar,” J. Appl. Phys. 56, 2573 (1984).

K. Iizuka, A. P. Freundorfer, “Detection of Nonmetallic Object by a Step Frequency Radar,” Proc. IEEE 71, 276 (1983); see also P. Krotky, “Fiber Optic Fault Locator,” U. Toronto B.S. Thesis (1981).
[CrossRef]

Garel-Jones, P. M.

F. P. Kapron, D. G. Kneller, P. M. Garel-Jones, “Aspects of Optical Frequency-Domain Reflectometry,” in Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1981), paper WF2.

Gold, M. P.

A. H. Hartog, M. P. Gold, “On the Theory of Backscattering in Single-Mode Optical Fibers,” IEEE/OSA J. Lightwave Technol. LT-2, 76 (1984).
[CrossRef]

Harris, F. J.

F. J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” Proc. IEEE 66, 51 (1978).
[CrossRef]

Hartog, A. H.

A. H. Hartog, M. P. Gold, “On the Theory of Backscattering in Single-Mode Optical Fibers,” IEEE/OSA J. Lightwave Technol. LT-2, 76 (1984).
[CrossRef]

Iizuka, K.

K. Iizuka, A. P. Freundorfer, “Detection of Nonmetallic Object by a Step Frequency Radar,” Proc. IEEE 71, 276 (1983); see also P. Krotky, “Fiber Optic Fault Locator,” U. Toronto B.S. Thesis (1981).
[CrossRef]

Kapron, F. P.

F. P. Kapron, D. G. Kneller, P. M. Garel-Jones, “Aspects of Optical Frequency-Domain Reflectometry,” in Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1981), paper WF2.

Kneller, D. G.

F. P. Kapron, D. G. Kneller, P. M. Garel-Jones, “Aspects of Optical Frequency-Domain Reflectometry,” in Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1981), paper WF2.

lizuka, K.

K. lizuka, A. P. Freundorfer, K. H. Wu, H. Mori, H. Ogura, V. Nguyen, “Step-Frequency Radar,” J. Appl. Phys. 56, 2573 (1984).

K. lizuka, Engineering Optics (Springer-Verlag, New York, 1985).

MacDonald, R. I.

Mickelson, A. R.

Mori, H.

K. lizuka, A. P. Freundorfer, K. H. Wu, H. Mori, H. Ogura, V. Nguyen, “Step-Frequency Radar,” J. Appl. Phys. 56, 2573 (1984).

Neumann, E.-G.

Nguyen, V.

K. lizuka, A. P. Freundorfer, K. H. Wu, H. Mori, H. Ogura, V. Nguyen, “Step-Frequency Radar,” J. Appl. Phys. 56, 2573 (1984).

Ogura, H.

K. lizuka, A. P. Freundorfer, K. H. Wu, H. Mori, H. Ogura, V. Nguyen, “Step-Frequency Radar,” J. Appl. Phys. 56, 2573 (1984).

Wu, K. H.

K. lizuka, A. P. Freundorfer, K. H. Wu, H. Mori, H. Ogura, V. Nguyen, “Step-Frequency Radar,” J. Appl. Phys. 56, 2573 (1984).

Appl. Opt. (4)

IEEE/OSA J. Lightwave Technol. (1)

A. H. Hartog, M. P. Gold, “On the Theory of Backscattering in Single-Mode Optical Fibers,” IEEE/OSA J. Lightwave Technol. LT-2, 76 (1984).
[CrossRef]

J. Appl. Phys. (1)

K. lizuka, A. P. Freundorfer, K. H. Wu, H. Mori, H. Ogura, V. Nguyen, “Step-Frequency Radar,” J. Appl. Phys. 56, 2573 (1984).

Proc. IEEE (2)

K. Iizuka, A. P. Freundorfer, “Detection of Nonmetallic Object by a Step Frequency Radar,” Proc. IEEE 71, 276 (1983); see also P. Krotky, “Fiber Optic Fault Locator,” U. Toronto B.S. Thesis (1981).
[CrossRef]

F. J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” Proc. IEEE 66, 51 (1978).
[CrossRef]

Other (2)

K. lizuka, Engineering Optics (Springer-Verlag, New York, 1985).

F. P. Kapron, D. G. Kneller, P. M. Garel-Jones, “Aspects of Optical Frequency-Domain Reflectometry,” in Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1981), paper WF2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Block diagram of the optical fiber fault locator by the step frequency method (SFM).

Fig. 2
Fig. 2

Theoretical baseband frequency response of the Rayleigh scattering and Fresnel reflection from an optical fiber with length l = 10 km. The Rayleigh scattering component works as a low-pass filter with a half-power frequency f c , at which the Rayleigh scattering component becomes 1.5 dB below its amplitude at f = 0.

Fig. 3
Fig. 3

Response function H(f n ) of an optical fiber measured at the output of the APD in Fig. 1 as a function of modulation frequency.

Fig. 4
Fig. 4

Display of the optical fiber fault locator by the step frequency method. Four spools of multimode fiber for λ = 0.83 μm with an attenuation of 2.5 dB/km were connected to give a total length of 10,291 km by means of one splice and three connectors which are all detected as sharp peaks.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

P t ( f ) = B exp ( - j 2 π f t ) .
i ( f ) = C B R f ( l ) exp ( - 2 α l ) exp [ - j 2 π ( t - 2 l v ) ] ,
C = η e h ν M ,
i ( f ) = C P t ( f ) 0 R ( τ ) exp ( 2 π j f τ ) d τ ,
H ( f ) = i ( f ) C i t ( f ) ,
R ( τ ) = 0 H ( f ) exp ( - 2 π j f τ ) d f + 0 H * ( f ) exp ( 2 π j f τ ) d f ,
f n = f 0 + n Δ f ,
S ( v τ k ) = exp ( - 2 π j f 0 τ k ) n = 0 N - 1 W n H ( f n ) exp ( - 2 π j n k / N ) ,
Δ l = v 2 1 N Δ f .
L m = v 2 N - 1 N Δ f .
R ( t ) = ½ S α s v exp ( - α v t ) U ( t - 2 l / v ) + R f exp ( - 2 α l ) δ ( t - 2 l / v ) ,
H ( f ) = ½ S α s v 1 - exp ( - 2 α l + 4 j π f l / v ) α v - 2 π f j + R f exp ( - 2 α l + 4 π j l f / v ) .

Metrics