Abstract

A 90° optical hybrid is a four-port optical device with two inputs and two outputs. The two output signals are proportional to E1 + E2 and E1 + E2 exp(j90°), respectively, where E1 and E2 are the complex amplitudes the two input signals. The 90° hybrids are needed in many applications, including homodyne optical receivers in both phase-locked and phase-diversity configurations. In this paper, the principle of operation of an all-fiber 90° hybrid is described, and an experimental unit using connectorized in-line single-mode fiber components is reported.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Kazovsky, “Decision-Driven Phase-Locked Loop for Optical Homodyne Receivers,” IEEE/OSA J. Lightwave Technol. LT-3, 1238 (1985).
    [Crossref]
  2. H. Philipp et al., “Costas Loop Experiments for a 10.6 μm Communications Receiver,” IEEE Trans. Commun. COM-31, 1000 (1983).
    [Crossref]
  3. T. Hodgkinson et al., “Demodulation of Optical DPSK Using In-Phase and Quadrature Detection,” Electron. Lett. 21, 867 (1985).
    [Crossref]
  4. L. Kazovsky, P. Meissner, E. Patzak, “ASK Multiport Optical Homodyne Receivers,” IEEE/OSA. J. Lightwave Technol.LT-5 (1987), in press.
  5. W. Leeb, “Realization of 90° and 180° Hybrids for Optical Frequencies,” Electron. Commun. AEU 37, No. 5/6, (1983).
  6. A. Tavis, J. E. Carrol, “Possible Fused Fibre In-Phase/Quadrature Measuring Multiport,” Electron. Lett. 21, 954 (1985).
    [Crossref]
  7. F. W. Shurcliff, S. Ballard, Polarized Light (Van Nostrand, Princeton, NJ, 1964).
  8. H. C. Lefevre, “Single-Mode-Fibre Fractional-Wave Devices and Polarization Controller,” Electron. Lett. 16, 778 (1980).
    [Crossref]
  9. B. S. Kawasaki, K. O. Hill, R. G. Lamont, “Biconical Taper Single-Mode Fiber Coupler,” Opt. Lett. 6, 327 (1981).
    [Crossref] [PubMed]
  10. R. A. Bergh, H. C. Lefevre, H. J. Shaw, “Single-Mode Fiber-Optic Polarizer,” Opt. Lett. 5, 479 (1980).
    [Crossref] [PubMed]
  11. W. C. Young, L. Curtis, “Low-Loss Field-Installable Biconic Connectors for Single-Mode Fibers,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1983), paper MG4.

1985 (3)

L. Kazovsky, “Decision-Driven Phase-Locked Loop for Optical Homodyne Receivers,” IEEE/OSA J. Lightwave Technol. LT-3, 1238 (1985).
[Crossref]

T. Hodgkinson et al., “Demodulation of Optical DPSK Using In-Phase and Quadrature Detection,” Electron. Lett. 21, 867 (1985).
[Crossref]

A. Tavis, J. E. Carrol, “Possible Fused Fibre In-Phase/Quadrature Measuring Multiport,” Electron. Lett. 21, 954 (1985).
[Crossref]

1983 (2)

W. Leeb, “Realization of 90° and 180° Hybrids for Optical Frequencies,” Electron. Commun. AEU 37, No. 5/6, (1983).

H. Philipp et al., “Costas Loop Experiments for a 10.6 μm Communications Receiver,” IEEE Trans. Commun. COM-31, 1000 (1983).
[Crossref]

1981 (1)

1980 (2)

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “Single-Mode Fiber-Optic Polarizer,” Opt. Lett. 5, 479 (1980).
[Crossref] [PubMed]

H. C. Lefevre, “Single-Mode-Fibre Fractional-Wave Devices and Polarization Controller,” Electron. Lett. 16, 778 (1980).
[Crossref]

Ballard, S.

F. W. Shurcliff, S. Ballard, Polarized Light (Van Nostrand, Princeton, NJ, 1964).

Bergh, R. A.

Carrol, J. E.

A. Tavis, J. E. Carrol, “Possible Fused Fibre In-Phase/Quadrature Measuring Multiport,” Electron. Lett. 21, 954 (1985).
[Crossref]

Curtis, L.

W. C. Young, L. Curtis, “Low-Loss Field-Installable Biconic Connectors for Single-Mode Fibers,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1983), paper MG4.

Hill, K. O.

Hodgkinson, T.

T. Hodgkinson et al., “Demodulation of Optical DPSK Using In-Phase and Quadrature Detection,” Electron. Lett. 21, 867 (1985).
[Crossref]

Kawasaki, B. S.

Kazovsky, L.

L. Kazovsky, “Decision-Driven Phase-Locked Loop for Optical Homodyne Receivers,” IEEE/OSA J. Lightwave Technol. LT-3, 1238 (1985).
[Crossref]

L. Kazovsky, P. Meissner, E. Patzak, “ASK Multiport Optical Homodyne Receivers,” IEEE/OSA. J. Lightwave Technol.LT-5 (1987), in press.

Lamont, R. G.

Leeb, W.

W. Leeb, “Realization of 90° and 180° Hybrids for Optical Frequencies,” Electron. Commun. AEU 37, No. 5/6, (1983).

Lefevre, H. C.

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “Single-Mode Fiber-Optic Polarizer,” Opt. Lett. 5, 479 (1980).
[Crossref] [PubMed]

H. C. Lefevre, “Single-Mode-Fibre Fractional-Wave Devices and Polarization Controller,” Electron. Lett. 16, 778 (1980).
[Crossref]

Meissner, P.

L. Kazovsky, P. Meissner, E. Patzak, “ASK Multiport Optical Homodyne Receivers,” IEEE/OSA. J. Lightwave Technol.LT-5 (1987), in press.

Patzak, E.

L. Kazovsky, P. Meissner, E. Patzak, “ASK Multiport Optical Homodyne Receivers,” IEEE/OSA. J. Lightwave Technol.LT-5 (1987), in press.

Philipp, H.

H. Philipp et al., “Costas Loop Experiments for a 10.6 μm Communications Receiver,” IEEE Trans. Commun. COM-31, 1000 (1983).
[Crossref]

Shaw, H. J.

Shurcliff, F. W.

F. W. Shurcliff, S. Ballard, Polarized Light (Van Nostrand, Princeton, NJ, 1964).

Tavis, A.

A. Tavis, J. E. Carrol, “Possible Fused Fibre In-Phase/Quadrature Measuring Multiport,” Electron. Lett. 21, 954 (1985).
[Crossref]

Young, W. C.

W. C. Young, L. Curtis, “Low-Loss Field-Installable Biconic Connectors for Single-Mode Fibers,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1983), paper MG4.

Electron. Commun. AEU (1)

W. Leeb, “Realization of 90° and 180° Hybrids for Optical Frequencies,” Electron. Commun. AEU 37, No. 5/6, (1983).

Electron. Lett. (3)

A. Tavis, J. E. Carrol, “Possible Fused Fibre In-Phase/Quadrature Measuring Multiport,” Electron. Lett. 21, 954 (1985).
[Crossref]

T. Hodgkinson et al., “Demodulation of Optical DPSK Using In-Phase and Quadrature Detection,” Electron. Lett. 21, 867 (1985).
[Crossref]

H. C. Lefevre, “Single-Mode-Fibre Fractional-Wave Devices and Polarization Controller,” Electron. Lett. 16, 778 (1980).
[Crossref]

IEEE Trans. Commun. (1)

H. Philipp et al., “Costas Loop Experiments for a 10.6 μm Communications Receiver,” IEEE Trans. Commun. COM-31, 1000 (1983).
[Crossref]

IEEE/OSA J. Lightwave Technol. (1)

L. Kazovsky, “Decision-Driven Phase-Locked Loop for Optical Homodyne Receivers,” IEEE/OSA J. Lightwave Technol. LT-3, 1238 (1985).
[Crossref]

Opt. Lett. (2)

Other (3)

W. C. Young, L. Curtis, “Low-Loss Field-Installable Biconic Connectors for Single-Mode Fibers,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1983), paper MG4.

L. Kazovsky, P. Meissner, E. Patzak, “ASK Multiport Optical Homodyne Receivers,” IEEE/OSA. J. Lightwave Technol.LT-5 (1987), in press.

F. W. Shurcliff, S. Ballard, Polarized Light (Van Nostrand, Princeton, NJ, 1964).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Block diagram of an all-fiber optical 90° hybrid.

Fig. 2
Fig. 2

Experimental 90° hybrid.

Fig. 3
Fig. 3

Simplified block diagram of an experimental setup used to verify the properties of a 90° hybrid.

Fig. 4
Fig. 4

Experimentally measured plot of I1 vs I2 conforming the operation of the 90° hybrid.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E 1 = E 1 [ 1 0 ] T ,
E 2 = E 2 exp ( j Φ ) [ 1 0 ] T ,
E 3 = 1 2 E 1 [ 1 1 ] T ;
E 4 = 1 2 E 2 exp ( j Φ ) [ 1 exp ( j Θ ) ] T ,
E 5 = 1 2 E 3 + 1 2 E 4 exp ( j 90 ° ) = 0.5 [ E 1 + E 2 exp [ j ( Φ + 90 ° ) ] E 1 + E 2 exp [ j ( Φ + Θ + 90 ° ) ] ] ,
E 6 = 1 2 E 3 exp ( j 90 ° ) + 1 2 E 4 = 0.5 [ E 1 exp ( j 90 ° ) + E 2 exp ( j Φ ) E 1 exp ( j 90 ° ) + E 2 exp [ j ( Φ + Θ ) ] ] .
E 7 = 0.5 [ E 1 + E 2 exp [ j ( Φ + 90 ° ) ] 0 ] ,
E 8 = 0.5 [ 0 E 1 exp ( j 90 ° ) + E 2 exp [ j ( Φ + Θ ) ] ] = 0.5 exp ( j 90 ° ) [ 0 E 1 + E 2 exp [ j ( Φ + Θ - 90 ° ) ] ] .
E 8 = 0.5 exp ( j 90 ° ) [ 0 E 1 + E 2 exp ( j Φ ) ] .
I 1 = R E 7 2 = 0.25 R [ E 1 2 + E 2 2 + 2 E 1 E 2 cos ( Φ + 90 ° ) ] ,
I 2 = R E 8 2 = 0.25 R ( E 1 2 + E 2 2 + 2 E 1 E 2 cos Φ ) .

Metrics