Abstract

The stability of the quantum efficiency of inversion layer, phosphorus-diffused (n on p), and boron-diffused (p on n) photodiodes has been investigated. Unsatisfactory silicon–silicon dioxide interfaces, latent recombination centers in the diffused layers, and moisture absorption by the device were identified as possible causes of instability. Diodes were fabricated using processes in which these sources of instability were carefully controlled. The resulting diodes were subjected to various accelerated aging tests, and the external quantum efficiency of the diodes was monitored during the tests. Diodes made by older procedures, in which some important parameters affecting stability were not controlled, were included in the study for comparison. The major result of this work is the demonstration that n on p photodiodes are inherently more stable than p on n types in the ultraviolet and blue spectral regions, but that stable p on n devices can also be produced with sufficient care.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. F. Zalewski, C. R. Duda, “Silicon Photodiode Device with 100% External Quantum Efficiency,” Appl. Opt. 22, 2867 (1983).
    [CrossRef] [PubMed]
  2. L-P. Boivin, F. T. McNeeley, “Electrically Calibrated Absolute Radiometer Suitable for Measurement Automation,” Appl. Opt. 25, 554 (1986).
    [CrossRef] [PubMed]
  3. E. Kool, “Influence of Heat Treatment and Ionizing Radiation on the Charge Distribution and Number of Surface States in the Si–SiO2 System,” IEEE Trans. Electron Devices ED-13, 238 (1966).
  4. M. A. Lind, E. F. Zalewski, “Silicon Photodetector Instabil- ities in the UV,” Appl. Opt. 15, 1377 (1976).
    [CrossRef] [PubMed]
  5. A. R. Schaefer, “Ultraviolet Enhanced Responsivity of Silicon Photodiodes: an Investigation,” Appl. Opt. 16, 1539 (1977).
    [CrossRef] [PubMed]
  6. R. L. Booker, J. Geist, “Photodiode Quantum Efficiency Enhancement at 365 nm: Optical and Electrical,” Appl. Opt 21, 3987 (1982).
    [CrossRef] [PubMed]
  7. W. Budde, Optical Radiation Measurements. Vol. 4: Physical Detectors of Optical Radiation (Academic, New York, 1983), p. 244.
  8. J. L. Gardner, F. J. Wilkinson, “Response Time and Linearity of Inversion Layer Silicon Photodiodes,” Appl. Opt. 24, 1531 (1985).
    [CrossRef] [PubMed]
  9. K. D. Stock, R. Heine, “On the Aging of Photovoltaic Cells,” Optik 71, 137 (1985).
  10. K. D. Stock, “Temporal Stability of Silicon Photodiodes,” in Proceedings, Twelfth International Symposium of Technical Communications on Photon Detectors, Varna, Sept. 1986 (IMEKO Secretariat H-1371, Budapest POB, 457), p. 129.
  11. E. F. Zalewski, “Recent Developments in the Techniques for the Self-Calibration of Si Photodiodes,” in Proceedings, Tenth International Symposium of Technical Communications on Photon Detectors, Berlin, Sept. 1982 (IMEKO Secretariat H-1371, Budapest POB, 457), p. 127.
  12. P. J. Key, N. P. Fox, M. L. Rastello, “Oxide-Bias Measurements in Silicon Photodiode Self-Calibration Technique,” Metrologia 21, 18 (1985).
    [CrossRef]
  13. J. Verdebout, R. L. Booker, “Degradation of Native Oxide Passivated Silicon Photodiodes by Repeated Oxide Bias,” J. Appl. Phys. 55, 406 (1984).
    [CrossRef]
  14. J. Verdebout, “Semiquantitative Model for the Oxide Bias Experiment and Its Application to the Study of p+nn+ Photodiode Degradation,” Appl. Opt. 23, 4339 (1984).
    [CrossRef] [PubMed]
  15. J. Geist, “Silicon Photodiode Front Region Quantum Efficiency Models,” J. Appl. Phys. 51, 3993 (1980).
    [CrossRef]
  16. E. F. Zalewski, J. Geist, “Silicon Photodiode Absolute Spectral Response Self-Calibration,” Appl. Opt. 18, 1214 (1980).
    [CrossRef]
  17. T. Hansen, “Silicon UV-Photodiode Using Natural Inversion Layers,” Phys. Scr. 18, 471 (1978).
    [CrossRef]
  18. J. Geist, E. Liang, A. R. Schaefer, “Complete Collection of Minority Carriers from the Inversion Layer in Induced Junction Diodes,” J. Appl. Phys. 52, 4879 (1981).
    [CrossRef]
  19. R. Korde, J. Geist, “Stable, High Quantum Efficiency Silicon Photodiodes by Arsenic Diffusion,” Solid State Electron. 30, 89 (1987).
    [CrossRef]
  20. R. Korde, “Induced Metallurgical Junction UV-Enhanced Silicon Photodiodes,” in Proceedings, First International Conference on Silicon Materials and Technology, Abstract (Oregon State U., Portland, 1985).
  21. V. G. Weizer et al., “Photon Degradation Effects in Terrestrial Silicon Solar Cells,” J. Appl. Phys. 50, 4443 (1979).
    [CrossRef]
  22. L. Manchandra, “Hot Electron Trapping Generic Reliability of p+ Polysilicon/SiO2/Silicon Structures for Fine Line CMOS Technology,” in 24th Annual Proceedings, Twenty-Fourth Annual Conference on Reliability Physics(IEEE, New York, 1986), p. 183.
  23. A. J. Tavendale, A. A. Williams, “Hydrogen Injection and Neutralization of Boron Acceptors Boiled in Water,” Appl. Phys. Lett. 48, 590 (1986).
    [CrossRef]
  24. K. Hofmann, M. Schultz, “Effect of Processing on Interface and Silicon Bulk Traps in MOS Structures,” in Insulating Films on Semiconductors, J. J. Simonne, J. Buxo, Eds. (North-Holland, New York, 1986), p. 173.
  25. V. Zekeria, T. Ma, “Dependence of Radiation-Induced Interface Traps on Gate Electrode Material in Metal/SiO2/Si Devices,” Appl. Phys. Lett. 47, 54 (1985), and references therein.
    [CrossRef]
  26. K. Blumenstock, R. Hezel, “Interface State Generation in the Si–SiO2 System by Non-Ionizing UV Irradiation,” in Insulating Films on Semiconductors, J. J. Simonne, J. Buxo (North-Holland, New York, 1986), p. 221.
  27. R. Korde, unpublished.
  28. J. F. Naber, F. K. Hopkins, “Edge Illumination of a Silicon Photodiode at Ultraviolet Wavelengths,” Appl. Opt. 26, 21 (1987).
    [CrossRef] [PubMed]
  29. J. Geist, E. F. Zalewski, “The Quantum Yields of Silicon in the Visible,” Appl. Phys. Lett. 35, 503 (1979).
    [CrossRef]
  30. J. Geist, E. F. Zalewski, A. R. Schaefer, “Spectral Response Self-Calibration and Interpolation of Silicon Photodiodes,” Appl. Opt. 19, 3795 (1980).
    [CrossRef] [PubMed]
  31. S. K. Ghandhi, VLSI Fabrication Principles: Silicon and Gallium Arsenic (Wiley, New York, 1983), p. 163.
  32. C. M. Botchek, VLSI Basic MOS Engineering, Vol. 1 (Pacific Technical Group, Inc., Sarasota, CA, 1984), p. 275.
  33. Z. A. Weinberg et al., “Reduction of Electron and Hole Trapping in SiO2 by Rapid Thermal Annealing,” Appl. Phys. Lett. 45, 1204 (1984).
    [CrossRef]
  34. Reference in this paper to commercial products is provided to adequately described the experimental technique. It implies neither endorsement by the National Bureau of Standards nor that the product so referenced is the best for the purpose.
  35. S. Armstrong, Epoxy Technology, Billerica, MA; personal communication.
  36. A. D. Wilson, H. Lyall, “Design of an Ultraviolet Radiometer. 2. Detector Optical Characteristics,” Appl. Opt. 25, 4530 (1986).
    [CrossRef] [PubMed]
  37. J. Geist, C. S. Wang, “New Calculations of the Quantum Efficiency of Silicon in the Near Ultraviolet,” Phys. Rev. B 27, 4841 (1983).
    [CrossRef]

1987 (2)

R. Korde, J. Geist, “Stable, High Quantum Efficiency Silicon Photodiodes by Arsenic Diffusion,” Solid State Electron. 30, 89 (1987).
[CrossRef]

J. F. Naber, F. K. Hopkins, “Edge Illumination of a Silicon Photodiode at Ultraviolet Wavelengths,” Appl. Opt. 26, 21 (1987).
[CrossRef] [PubMed]

1986 (3)

L-P. Boivin, F. T. McNeeley, “Electrically Calibrated Absolute Radiometer Suitable for Measurement Automation,” Appl. Opt. 25, 554 (1986).
[CrossRef] [PubMed]

A. J. Tavendale, A. A. Williams, “Hydrogen Injection and Neutralization of Boron Acceptors Boiled in Water,” Appl. Phys. Lett. 48, 590 (1986).
[CrossRef]

A. D. Wilson, H. Lyall, “Design of an Ultraviolet Radiometer. 2. Detector Optical Characteristics,” Appl. Opt. 25, 4530 (1986).
[CrossRef] [PubMed]

1985 (4)

V. Zekeria, T. Ma, “Dependence of Radiation-Induced Interface Traps on Gate Electrode Material in Metal/SiO2/Si Devices,” Appl. Phys. Lett. 47, 54 (1985), and references therein.
[CrossRef]

J. L. Gardner, F. J. Wilkinson, “Response Time and Linearity of Inversion Layer Silicon Photodiodes,” Appl. Opt. 24, 1531 (1985).
[CrossRef] [PubMed]

K. D. Stock, R. Heine, “On the Aging of Photovoltaic Cells,” Optik 71, 137 (1985).

P. J. Key, N. P. Fox, M. L. Rastello, “Oxide-Bias Measurements in Silicon Photodiode Self-Calibration Technique,” Metrologia 21, 18 (1985).
[CrossRef]

1984 (3)

J. Verdebout, R. L. Booker, “Degradation of Native Oxide Passivated Silicon Photodiodes by Repeated Oxide Bias,” J. Appl. Phys. 55, 406 (1984).
[CrossRef]

Z. A. Weinberg et al., “Reduction of Electron and Hole Trapping in SiO2 by Rapid Thermal Annealing,” Appl. Phys. Lett. 45, 1204 (1984).
[CrossRef]

J. Verdebout, “Semiquantitative Model for the Oxide Bias Experiment and Its Application to the Study of p+nn+ Photodiode Degradation,” Appl. Opt. 23, 4339 (1984).
[CrossRef] [PubMed]

1983 (2)

E. F. Zalewski, C. R. Duda, “Silicon Photodiode Device with 100% External Quantum Efficiency,” Appl. Opt. 22, 2867 (1983).
[CrossRef] [PubMed]

J. Geist, C. S. Wang, “New Calculations of the Quantum Efficiency of Silicon in the Near Ultraviolet,” Phys. Rev. B 27, 4841 (1983).
[CrossRef]

1982 (1)

R. L. Booker, J. Geist, “Photodiode Quantum Efficiency Enhancement at 365 nm: Optical and Electrical,” Appl. Opt 21, 3987 (1982).
[CrossRef] [PubMed]

1981 (1)

J. Geist, E. Liang, A. R. Schaefer, “Complete Collection of Minority Carriers from the Inversion Layer in Induced Junction Diodes,” J. Appl. Phys. 52, 4879 (1981).
[CrossRef]

1980 (3)

J. Geist, E. F. Zalewski, A. R. Schaefer, “Spectral Response Self-Calibration and Interpolation of Silicon Photodiodes,” Appl. Opt. 19, 3795 (1980).
[CrossRef] [PubMed]

J. Geist, “Silicon Photodiode Front Region Quantum Efficiency Models,” J. Appl. Phys. 51, 3993 (1980).
[CrossRef]

E. F. Zalewski, J. Geist, “Silicon Photodiode Absolute Spectral Response Self-Calibration,” Appl. Opt. 18, 1214 (1980).
[CrossRef]

1979 (2)

V. G. Weizer et al., “Photon Degradation Effects in Terrestrial Silicon Solar Cells,” J. Appl. Phys. 50, 4443 (1979).
[CrossRef]

J. Geist, E. F. Zalewski, “The Quantum Yields of Silicon in the Visible,” Appl. Phys. Lett. 35, 503 (1979).
[CrossRef]

1978 (1)

T. Hansen, “Silicon UV-Photodiode Using Natural Inversion Layers,” Phys. Scr. 18, 471 (1978).
[CrossRef]

1977 (1)

1976 (1)

1966 (1)

E. Kool, “Influence of Heat Treatment and Ionizing Radiation on the Charge Distribution and Number of Surface States in the Si–SiO2 System,” IEEE Trans. Electron Devices ED-13, 238 (1966).

Armstrong, S.

S. Armstrong, Epoxy Technology, Billerica, MA; personal communication.

Blumenstock, K.

K. Blumenstock, R. Hezel, “Interface State Generation in the Si–SiO2 System by Non-Ionizing UV Irradiation,” in Insulating Films on Semiconductors, J. J. Simonne, J. Buxo (North-Holland, New York, 1986), p. 221.

Boivin, L-P.

Booker, R. L.

J. Verdebout, R. L. Booker, “Degradation of Native Oxide Passivated Silicon Photodiodes by Repeated Oxide Bias,” J. Appl. Phys. 55, 406 (1984).
[CrossRef]

R. L. Booker, J. Geist, “Photodiode Quantum Efficiency Enhancement at 365 nm: Optical and Electrical,” Appl. Opt 21, 3987 (1982).
[CrossRef] [PubMed]

Botchek, C. M.

C. M. Botchek, VLSI Basic MOS Engineering, Vol. 1 (Pacific Technical Group, Inc., Sarasota, CA, 1984), p. 275.

Budde, W.

W. Budde, Optical Radiation Measurements. Vol. 4: Physical Detectors of Optical Radiation (Academic, New York, 1983), p. 244.

Duda, C. R.

Fox, N. P.

P. J. Key, N. P. Fox, M. L. Rastello, “Oxide-Bias Measurements in Silicon Photodiode Self-Calibration Technique,” Metrologia 21, 18 (1985).
[CrossRef]

Gardner, J. L.

J. L. Gardner, F. J. Wilkinson, “Response Time and Linearity of Inversion Layer Silicon Photodiodes,” Appl. Opt. 24, 1531 (1985).
[CrossRef] [PubMed]

Geist, J.

R. Korde, J. Geist, “Stable, High Quantum Efficiency Silicon Photodiodes by Arsenic Diffusion,” Solid State Electron. 30, 89 (1987).
[CrossRef]

J. Geist, C. S. Wang, “New Calculations of the Quantum Efficiency of Silicon in the Near Ultraviolet,” Phys. Rev. B 27, 4841 (1983).
[CrossRef]

R. L. Booker, J. Geist, “Photodiode Quantum Efficiency Enhancement at 365 nm: Optical and Electrical,” Appl. Opt 21, 3987 (1982).
[CrossRef] [PubMed]

J. Geist, E. Liang, A. R. Schaefer, “Complete Collection of Minority Carriers from the Inversion Layer in Induced Junction Diodes,” J. Appl. Phys. 52, 4879 (1981).
[CrossRef]

E. F. Zalewski, J. Geist, “Silicon Photodiode Absolute Spectral Response Self-Calibration,” Appl. Opt. 18, 1214 (1980).
[CrossRef]

J. Geist, “Silicon Photodiode Front Region Quantum Efficiency Models,” J. Appl. Phys. 51, 3993 (1980).
[CrossRef]

J. Geist, E. F. Zalewski, A. R. Schaefer, “Spectral Response Self-Calibration and Interpolation of Silicon Photodiodes,” Appl. Opt. 19, 3795 (1980).
[CrossRef] [PubMed]

J. Geist, E. F. Zalewski, “The Quantum Yields of Silicon in the Visible,” Appl. Phys. Lett. 35, 503 (1979).
[CrossRef]

Ghandhi, S. K.

S. K. Ghandhi, VLSI Fabrication Principles: Silicon and Gallium Arsenic (Wiley, New York, 1983), p. 163.

Hansen, T.

T. Hansen, “Silicon UV-Photodiode Using Natural Inversion Layers,” Phys. Scr. 18, 471 (1978).
[CrossRef]

Heine, R.

K. D. Stock, R. Heine, “On the Aging of Photovoltaic Cells,” Optik 71, 137 (1985).

Hezel, R.

K. Blumenstock, R. Hezel, “Interface State Generation in the Si–SiO2 System by Non-Ionizing UV Irradiation,” in Insulating Films on Semiconductors, J. J. Simonne, J. Buxo (North-Holland, New York, 1986), p. 221.

Hofmann, K.

K. Hofmann, M. Schultz, “Effect of Processing on Interface and Silicon Bulk Traps in MOS Structures,” in Insulating Films on Semiconductors, J. J. Simonne, J. Buxo, Eds. (North-Holland, New York, 1986), p. 173.

Hopkins, F. K.

Key, P. J.

P. J. Key, N. P. Fox, M. L. Rastello, “Oxide-Bias Measurements in Silicon Photodiode Self-Calibration Technique,” Metrologia 21, 18 (1985).
[CrossRef]

Kool, E.

E. Kool, “Influence of Heat Treatment and Ionizing Radiation on the Charge Distribution and Number of Surface States in the Si–SiO2 System,” IEEE Trans. Electron Devices ED-13, 238 (1966).

Korde, R.

R. Korde, J. Geist, “Stable, High Quantum Efficiency Silicon Photodiodes by Arsenic Diffusion,” Solid State Electron. 30, 89 (1987).
[CrossRef]

R. Korde, unpublished.

R. Korde, “Induced Metallurgical Junction UV-Enhanced Silicon Photodiodes,” in Proceedings, First International Conference on Silicon Materials and Technology, Abstract (Oregon State U., Portland, 1985).

Liang, E.

J. Geist, E. Liang, A. R. Schaefer, “Complete Collection of Minority Carriers from the Inversion Layer in Induced Junction Diodes,” J. Appl. Phys. 52, 4879 (1981).
[CrossRef]

Lind, M. A.

Lyall, H.

A. D. Wilson, H. Lyall, “Design of an Ultraviolet Radiometer. 2. Detector Optical Characteristics,” Appl. Opt. 25, 4530 (1986).
[CrossRef] [PubMed]

Ma, T.

V. Zekeria, T. Ma, “Dependence of Radiation-Induced Interface Traps on Gate Electrode Material in Metal/SiO2/Si Devices,” Appl. Phys. Lett. 47, 54 (1985), and references therein.
[CrossRef]

Manchandra, L.

L. Manchandra, “Hot Electron Trapping Generic Reliability of p+ Polysilicon/SiO2/Silicon Structures for Fine Line CMOS Technology,” in 24th Annual Proceedings, Twenty-Fourth Annual Conference on Reliability Physics(IEEE, New York, 1986), p. 183.

McNeeley, F. T.

Naber, J. F.

Rastello, M. L.

P. J. Key, N. P. Fox, M. L. Rastello, “Oxide-Bias Measurements in Silicon Photodiode Self-Calibration Technique,” Metrologia 21, 18 (1985).
[CrossRef]

Schaefer, A. R.

J. Geist, E. Liang, A. R. Schaefer, “Complete Collection of Minority Carriers from the Inversion Layer in Induced Junction Diodes,” J. Appl. Phys. 52, 4879 (1981).
[CrossRef]

J. Geist, E. F. Zalewski, A. R. Schaefer, “Spectral Response Self-Calibration and Interpolation of Silicon Photodiodes,” Appl. Opt. 19, 3795 (1980).
[CrossRef] [PubMed]

A. R. Schaefer, “Ultraviolet Enhanced Responsivity of Silicon Photodiodes: an Investigation,” Appl. Opt. 16, 1539 (1977).
[CrossRef] [PubMed]

Schultz, M.

K. Hofmann, M. Schultz, “Effect of Processing on Interface and Silicon Bulk Traps in MOS Structures,” in Insulating Films on Semiconductors, J. J. Simonne, J. Buxo, Eds. (North-Holland, New York, 1986), p. 173.

Stock, K. D.

K. D. Stock, R. Heine, “On the Aging of Photovoltaic Cells,” Optik 71, 137 (1985).

K. D. Stock, “Temporal Stability of Silicon Photodiodes,” in Proceedings, Twelfth International Symposium of Technical Communications on Photon Detectors, Varna, Sept. 1986 (IMEKO Secretariat H-1371, Budapest POB, 457), p. 129.

Tavendale, A. J.

A. J. Tavendale, A. A. Williams, “Hydrogen Injection and Neutralization of Boron Acceptors Boiled in Water,” Appl. Phys. Lett. 48, 590 (1986).
[CrossRef]

Verdebout, J.

J. Verdebout, R. L. Booker, “Degradation of Native Oxide Passivated Silicon Photodiodes by Repeated Oxide Bias,” J. Appl. Phys. 55, 406 (1984).
[CrossRef]

J. Verdebout, “Semiquantitative Model for the Oxide Bias Experiment and Its Application to the Study of p+nn+ Photodiode Degradation,” Appl. Opt. 23, 4339 (1984).
[CrossRef] [PubMed]

Wang, C. S.

J. Geist, C. S. Wang, “New Calculations of the Quantum Efficiency of Silicon in the Near Ultraviolet,” Phys. Rev. B 27, 4841 (1983).
[CrossRef]

Weinberg, Z. A.

Z. A. Weinberg et al., “Reduction of Electron and Hole Trapping in SiO2 by Rapid Thermal Annealing,” Appl. Phys. Lett. 45, 1204 (1984).
[CrossRef]

Weizer, V. G.

V. G. Weizer et al., “Photon Degradation Effects in Terrestrial Silicon Solar Cells,” J. Appl. Phys. 50, 4443 (1979).
[CrossRef]

Wilkinson, F. J.

J. L. Gardner, F. J. Wilkinson, “Response Time and Linearity of Inversion Layer Silicon Photodiodes,” Appl. Opt. 24, 1531 (1985).
[CrossRef] [PubMed]

Williams, A. A.

A. J. Tavendale, A. A. Williams, “Hydrogen Injection and Neutralization of Boron Acceptors Boiled in Water,” Appl. Phys. Lett. 48, 590 (1986).
[CrossRef]

Wilson, A. D.

A. D. Wilson, H. Lyall, “Design of an Ultraviolet Radiometer. 2. Detector Optical Characteristics,” Appl. Opt. 25, 4530 (1986).
[CrossRef] [PubMed]

Zalewski, E. F.

E. F. Zalewski, C. R. Duda, “Silicon Photodiode Device with 100% External Quantum Efficiency,” Appl. Opt. 22, 2867 (1983).
[CrossRef] [PubMed]

E. F. Zalewski, J. Geist, “Silicon Photodiode Absolute Spectral Response Self-Calibration,” Appl. Opt. 18, 1214 (1980).
[CrossRef]

J. Geist, E. F. Zalewski, A. R. Schaefer, “Spectral Response Self-Calibration and Interpolation of Silicon Photodiodes,” Appl. Opt. 19, 3795 (1980).
[CrossRef] [PubMed]

J. Geist, E. F. Zalewski, “The Quantum Yields of Silicon in the Visible,” Appl. Phys. Lett. 35, 503 (1979).
[CrossRef]

M. A. Lind, E. F. Zalewski, “Silicon Photodetector Instabil- ities in the UV,” Appl. Opt. 15, 1377 (1976).
[CrossRef] [PubMed]

E. F. Zalewski, “Recent Developments in the Techniques for the Self-Calibration of Si Photodiodes,” in Proceedings, Tenth International Symposium of Technical Communications on Photon Detectors, Berlin, Sept. 1982 (IMEKO Secretariat H-1371, Budapest POB, 457), p. 127.

Zekeria, V.

V. Zekeria, T. Ma, “Dependence of Radiation-Induced Interface Traps on Gate Electrode Material in Metal/SiO2/Si Devices,” Appl. Phys. Lett. 47, 54 (1985), and references therein.
[CrossRef]

Appl. Opt. (4)

J. L. Gardner, F. J. Wilkinson, “Response Time and Linearity of Inversion Layer Silicon Photodiodes,” Appl. Opt. 24, 1531 (1985).
[CrossRef] [PubMed]

E. F. Zalewski, J. Geist, “Silicon Photodiode Absolute Spectral Response Self-Calibration,” Appl. Opt. 18, 1214 (1980).
[CrossRef]

J. Geist, E. F. Zalewski, A. R. Schaefer, “Spectral Response Self-Calibration and Interpolation of Silicon Photodiodes,” Appl. Opt. 19, 3795 (1980).
[CrossRef] [PubMed]

A. D. Wilson, H. Lyall, “Design of an Ultraviolet Radiometer. 2. Detector Optical Characteristics,” Appl. Opt. 25, 4530 (1986).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

A. J. Tavendale, A. A. Williams, “Hydrogen Injection and Neutralization of Boron Acceptors Boiled in Water,” Appl. Phys. Lett. 48, 590 (1986).
[CrossRef]

Appl. Opt (1)

R. L. Booker, J. Geist, “Photodiode Quantum Efficiency Enhancement at 365 nm: Optical and Electrical,” Appl. Opt 21, 3987 (1982).
[CrossRef] [PubMed]

Appl. Opt. (6)

Appl. Phys. Lett. (3)

Z. A. Weinberg et al., “Reduction of Electron and Hole Trapping in SiO2 by Rapid Thermal Annealing,” Appl. Phys. Lett. 45, 1204 (1984).
[CrossRef]

V. Zekeria, T. Ma, “Dependence of Radiation-Induced Interface Traps on Gate Electrode Material in Metal/SiO2/Si Devices,” Appl. Phys. Lett. 47, 54 (1985), and references therein.
[CrossRef]

J. Geist, E. F. Zalewski, “The Quantum Yields of Silicon in the Visible,” Appl. Phys. Lett. 35, 503 (1979).
[CrossRef]

IEEE Trans. Electron Devices (1)

E. Kool, “Influence of Heat Treatment and Ionizing Radiation on the Charge Distribution and Number of Surface States in the Si–SiO2 System,” IEEE Trans. Electron Devices ED-13, 238 (1966).

J. Appl. Phys. (1)

V. G. Weizer et al., “Photon Degradation Effects in Terrestrial Silicon Solar Cells,” J. Appl. Phys. 50, 4443 (1979).
[CrossRef]

J. Appl. Phys. (3)

J. Geist, E. Liang, A. R. Schaefer, “Complete Collection of Minority Carriers from the Inversion Layer in Induced Junction Diodes,” J. Appl. Phys. 52, 4879 (1981).
[CrossRef]

J. Verdebout, R. L. Booker, “Degradation of Native Oxide Passivated Silicon Photodiodes by Repeated Oxide Bias,” J. Appl. Phys. 55, 406 (1984).
[CrossRef]

J. Geist, “Silicon Photodiode Front Region Quantum Efficiency Models,” J. Appl. Phys. 51, 3993 (1980).
[CrossRef]

Metrologia (1)

P. J. Key, N. P. Fox, M. L. Rastello, “Oxide-Bias Measurements in Silicon Photodiode Self-Calibration Technique,” Metrologia 21, 18 (1985).
[CrossRef]

Optik (1)

K. D. Stock, R. Heine, “On the Aging of Photovoltaic Cells,” Optik 71, 137 (1985).

Phys. Rev. B (1)

J. Geist, C. S. Wang, “New Calculations of the Quantum Efficiency of Silicon in the Near Ultraviolet,” Phys. Rev. B 27, 4841 (1983).
[CrossRef]

Phys. Scr. (1)

T. Hansen, “Silicon UV-Photodiode Using Natural Inversion Layers,” Phys. Scr. 18, 471 (1978).
[CrossRef]

Solid State Electron. (1)

R. Korde, J. Geist, “Stable, High Quantum Efficiency Silicon Photodiodes by Arsenic Diffusion,” Solid State Electron. 30, 89 (1987).
[CrossRef]

Other (12)

R. Korde, “Induced Metallurgical Junction UV-Enhanced Silicon Photodiodes,” in Proceedings, First International Conference on Silicon Materials and Technology, Abstract (Oregon State U., Portland, 1985).

L. Manchandra, “Hot Electron Trapping Generic Reliability of p+ Polysilicon/SiO2/Silicon Structures for Fine Line CMOS Technology,” in 24th Annual Proceedings, Twenty-Fourth Annual Conference on Reliability Physics(IEEE, New York, 1986), p. 183.

K. Hofmann, M. Schultz, “Effect of Processing on Interface and Silicon Bulk Traps in MOS Structures,” in Insulating Films on Semiconductors, J. J. Simonne, J. Buxo, Eds. (North-Holland, New York, 1986), p. 173.

K. D. Stock, “Temporal Stability of Silicon Photodiodes,” in Proceedings, Twelfth International Symposium of Technical Communications on Photon Detectors, Varna, Sept. 1986 (IMEKO Secretariat H-1371, Budapest POB, 457), p. 129.

E. F. Zalewski, “Recent Developments in the Techniques for the Self-Calibration of Si Photodiodes,” in Proceedings, Tenth International Symposium of Technical Communications on Photon Detectors, Berlin, Sept. 1982 (IMEKO Secretariat H-1371, Budapest POB, 457), p. 127.

W. Budde, Optical Radiation Measurements. Vol. 4: Physical Detectors of Optical Radiation (Academic, New York, 1983), p. 244.

K. Blumenstock, R. Hezel, “Interface State Generation in the Si–SiO2 System by Non-Ionizing UV Irradiation,” in Insulating Films on Semiconductors, J. J. Simonne, J. Buxo (North-Holland, New York, 1986), p. 221.

R. Korde, unpublished.

Reference in this paper to commercial products is provided to adequately described the experimental technique. It implies neither endorsement by the National Bureau of Standards nor that the product so referenced is the best for the purpose.

S. Armstrong, Epoxy Technology, Billerica, MA; personal communication.

S. K. Ghandhi, VLSI Fabrication Principles: Silicon and Gallium Arsenic (Wiley, New York, 1983), p. 163.

C. M. Botchek, VLSI Basic MOS Engineering, Vol. 1 (Pacific Technical Group, Inc., Sarasota, CA, 1984), p. 275.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the silicon photodiodes fabricated for this work: (A) inversion layer type; (B) phosphorus-diffused type (n on p); and (C) boron-diffused type (p on n).

Fig. 2
Fig. 2

Spreading resistance profile of boron diffusion in p on n photodiode, and of phosphorus diffusion in n on p photodiode. Phosphorus pile-up at the front interface, if present, is not resolved by spreading resistance measurements.

Fig. 3
Fig. 3

Internal quantum efficiency as a function of wavelength for phosphorus-diffused diode. The internal quantum efficiency increases above unity at the short wavelengths because more than one electron–hole pair is produced per absorbed photon at these wavelengths as discussed in Refs. 29 and 37.

Fig. 4
Fig. 4

Relative change in external quantum efficiency as a function of wavelength for silicon photodiodes after exposure to 20 mW/cm2 of 254-nm radiation for 24 h.

Fig. 5
Fig. 5

Relative change in external quantum efficiency as a function of wavelength for silicon photodiodes after exposure to 100°C for 196 h.

Fig. 6
Fig. 6

Relative change in external quantum efficiency as a function of wavelength for silicon photodiodes after exposure to 37.8°C, 100% RH for 48 h.

Fig. 7
Fig. 7

Change in spectral responsivity at 400 nm as a function of duration of exposure to 110°C.

Metrics