Abstract

A new type of scanning photometric ellipsometer with polarizer and analyzer both rotating synchronously at rotation rates of ω0/2 and ω0 (f0 = 51 Hz), has been designed and constructed. The mechanical and electrical design, alignment, calibration, and error reduction of the system are discussed in detail. Through measuring the amplitudes of the three ac components from the photomultiplier, at frequencies of 51, 102, and 153 Hz, respectively, complex dielectric function spectra have been obtained for test samples of Au and CdTe in the 1.5–5.5-eV range and shown to be in agreement with the results of others.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Aspnes, “Spectroscopic Ellipsometry of Solids,” in Optical Properties of Solids—New Developments, B. O. Seraphin, Ed. (North-Holland, Amsterdam, 1976), Chap. 15.
  2. D. E. Aspnes, “Fourier Transform Detection System for Rotating-Analyzer Ellipsometers,” Opt. Commun. 8, 222 (1973).
    [CrossRef]
  3. D. E. Aspnes, “High Precision Scanning Ellipsometer,” Appl. Opt. 14, 220, (1975).
    [PubMed]
  4. D. E. Aspnes, “Dielectric Function and Optical Parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985 (1983).
    [CrossRef]
  5. D. E. Aspnes, “Dielectric Properties of Heavily Doped Crystalline and Amorphous Silicon from 1.5 to 6.0 eV,” Phys. Rev. B 29, 768 (1984).
    [CrossRef]
  6. L. Viña, C. Umbach, M. Cardona, L. Vodopyanov, “Ellipsometric Studies of Electronic Interband Transitions in CdxHg1−xTe,” Phys. Rev. B 29, 6752 (1984).
    [CrossRef]
  7. R. H. Muller, “Present Status of Automatic Ellipsometers,” Surf. Sci. 56, 19 (1976);A. C. Lowe, “Practical Limitations to Accuracy in a Nulling Automatic Wavelength-Scanning Ellipsometer,” Surf. Sci. 56, 134, (1976).
    [CrossRef]
  8. A.-R. M. Zaghloul, R. M. A. Azzam, “Single-Element Rotating-Polarizer Ellipsometer: psi Meter,” Surf. Sci. 96, 168 (1980).
    [CrossRef]
  9. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  10. P. S. Hauge, “Survey of Methods for the Complete Determination of a State of Polarization,” Proc. Soc. Photo-Opt. Instrum. Eng. 88, 3 (1976).
  11. P. S. Hauge, F. H. Dill, “A Rotating-Compensator Fourier Ellipsometer,” Opt. Commun. 14, 431 (1975).
    [CrossRef]
  12. R. Greef, “An Automatic Ellipsometer for Use in Electrochemical Investigations,” Rev. Sci. Instrum. 41, 532 (1970).
    [CrossRef]
  13. W. Budde, “Photoelectric Analysis of Polarized Light,” Appl. Opt. 1, 201 (1962).
    [CrossRef]
  14. EMI Gencom Inc., Plainview, NY, 11803.
  15. Amperex Elec. Co., Hicksville, Long Island, NY.
  16. D. E. Aspnes, A. A. Studna, “Method for Drift Stabilization and Photomultiplier Linearization for Photometric Ellipsometers and Polarimeters,” Rev. Sci. Instrum. 49, 291 (1978).
    [CrossRef] [PubMed]
  17. S. Kawabata, “Improved Measurement Method in Rotating-Analyzer Ellipsometry,” J. Opt. Soc. Am. A1, 706 (1984).
    [CrossRef]
  18. C. Wijers, “A One-Wavelength in situ Alignment Method for Rotating Analyzer Ellipsometers,” Appl. Phys. B 27, 5 (1982).
    [CrossRef]
  19. D. E. Aspnes, “Effects of Component Optical Activity in Data Reduction and Calibration of Rotating-Analyzer Ellipsometers,” J. Opt. Soc. Am. 64, 812 (1974).
    [CrossRef]
  20. R. M. A. Azzam, “A Sample Fourier Photopolarimeter with Rotating Polarizer and Analyzer for Measuring Jones and Mueller Matrices,” Opt. Commun. 25, 137 (1978).
    [CrossRef]
  21. W. A. Shurcliff, Polarized Light (Harvard U. P.Cambridge, 1962).
  22. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).
  23. J. M. Bennett, “A Critical Evaluation of Rhomb-type Quarterwave Retarders,” Appl. Opt. 9, 2123 (1970).
    [CrossRef] [PubMed]
  24. Optics For Research Inc., Caldwell, NJ 07006.
  25. D. E. Johnson, J. R. Johnson, H. P. Moore, A Handbook of Active Filters (Prentice-Hall, Englewood Cliffs, NJ, 1980).
  26. D. E. Johnson, J. L. Hilburn, Rapid Practical Designs of Active Filters (Wiley, New York, 1975).
  27. L. M. Faulkenberry, An Introduction to Operational Amplifiers, with Linear IC Applications (Wiley, New York, 1980), Chap. 9.
  28. M. V. Klein, T. E. Furtak, Optics (Wiley, NY, 1986), Chap. 9.
  29. J. F. Nye, Physical Properties of Crystals (Oxford U.P., London, 1957), pp. 260ff.
  30. D. E. Aspnes, E. Kinsbron, D. D. Bacon, “Optical Properties of Au: Sample Effects,” Phys. Rev. B 21, 3290, (1980).
    [CrossRef]
  31. P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  32. R. Rosei, D. W. Lynch, “Thermomodulation Spectra of Al, Au, and Cu,” Phys. Rev. B 5, 3883 (1972).
    [CrossRef]
  33. M. L. Thèye, “Investigation of the Optical Properties of Au by Means of Thin Semitransparent Films,” Phys. Rev. B 2, 3060 (1970).
    [CrossRef]
  34. M. Cardona, G. Harbeke, “Excitons at L Absorption Edge in Zinc Blende-Type Semiconductor,” Phys. Rev. Lett. 8, 90 (1962).
    [CrossRef]
  35. H. Arwin, D. E. Aspnes, D. R. Rhiger, “Properties of Hg0.71Cd0.29Te and Some Native Oxides by Spectroscopic Ellipsometry,” J. Appl. Phys. 54, 7132 (1983).
    [CrossRef]
  36. D. J. Chadi, J. P. Walter, L. Cohen, Y. Petroff, M. Balkanski, “Reflective and Electronic Band Structures of CdTe and HgTe,” Phys. Rev. B 5, 3058 (1972).
    [CrossRef]
  37. D. E. Aspnes, “Measurement and Correction of First-Order Errors in Ellipsometry,” J. Opt. Soc. Am. 61, 1077 (1971).
    [CrossRef]
  38. R. M. Azzam, N. M. Bashara, “Analysis of Systematic Errors in Rotating-Analyzer Ellipsometers,” J. Opt. Soc. Am. 64, 1459 (1974).
    [CrossRef]
  39. D. E. Aspnes, A. A. Studna, “Geometrically Exact Monochromator Alignment,” Rev. Sci. Instrum. 41, 966 (1970).
    [CrossRef]
  40. R. C. O'Handley, “Modified Jones Calculus for Analysis of Errors,” J. Opt. Soc. Am. 63, 523 (1973).
    [CrossRef]
  41. P. L. Land, “A Discussion of the Region of Linear Operation of Photomultiplier,” Rev. Sci. Instrum. 42, 420 (1971).
    [CrossRef]
  42. L. Jackson, Digital Filters and Signal Processing (Kluwer Academic, Boston, 1986).

1984 (3)

D. E. Aspnes, “Dielectric Properties of Heavily Doped Crystalline and Amorphous Silicon from 1.5 to 6.0 eV,” Phys. Rev. B 29, 768 (1984).
[CrossRef]

L. Viña, C. Umbach, M. Cardona, L. Vodopyanov, “Ellipsometric Studies of Electronic Interband Transitions in CdxHg1−xTe,” Phys. Rev. B 29, 6752 (1984).
[CrossRef]

S. Kawabata, “Improved Measurement Method in Rotating-Analyzer Ellipsometry,” J. Opt. Soc. Am. A1, 706 (1984).
[CrossRef]

1983 (2)

D. E. Aspnes, “Dielectric Function and Optical Parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985 (1983).
[CrossRef]

H. Arwin, D. E. Aspnes, D. R. Rhiger, “Properties of Hg0.71Cd0.29Te and Some Native Oxides by Spectroscopic Ellipsometry,” J. Appl. Phys. 54, 7132 (1983).
[CrossRef]

1982 (1)

C. Wijers, “A One-Wavelength in situ Alignment Method for Rotating Analyzer Ellipsometers,” Appl. Phys. B 27, 5 (1982).
[CrossRef]

1980 (2)

D. E. Aspnes, E. Kinsbron, D. D. Bacon, “Optical Properties of Au: Sample Effects,” Phys. Rev. B 21, 3290, (1980).
[CrossRef]

A.-R. M. Zaghloul, R. M. A. Azzam, “Single-Element Rotating-Polarizer Ellipsometer: psi Meter,” Surf. Sci. 96, 168 (1980).
[CrossRef]

1978 (2)

D. E. Aspnes, A. A. Studna, “Method for Drift Stabilization and Photomultiplier Linearization for Photometric Ellipsometers and Polarimeters,” Rev. Sci. Instrum. 49, 291 (1978).
[CrossRef] [PubMed]

R. M. A. Azzam, “A Sample Fourier Photopolarimeter with Rotating Polarizer and Analyzer for Measuring Jones and Mueller Matrices,” Opt. Commun. 25, 137 (1978).
[CrossRef]

1976 (2)

P. S. Hauge, “Survey of Methods for the Complete Determination of a State of Polarization,” Proc. Soc. Photo-Opt. Instrum. Eng. 88, 3 (1976).

R. H. Muller, “Present Status of Automatic Ellipsometers,” Surf. Sci. 56, 19 (1976);A. C. Lowe, “Practical Limitations to Accuracy in a Nulling Automatic Wavelength-Scanning Ellipsometer,” Surf. Sci. 56, 134, (1976).
[CrossRef]

1975 (2)

D. E. Aspnes, “High Precision Scanning Ellipsometer,” Appl. Opt. 14, 220, (1975).
[PubMed]

P. S. Hauge, F. H. Dill, “A Rotating-Compensator Fourier Ellipsometer,” Opt. Commun. 14, 431 (1975).
[CrossRef]

1974 (2)

1973 (2)

R. C. O'Handley, “Modified Jones Calculus for Analysis of Errors,” J. Opt. Soc. Am. 63, 523 (1973).
[CrossRef]

D. E. Aspnes, “Fourier Transform Detection System for Rotating-Analyzer Ellipsometers,” Opt. Commun. 8, 222 (1973).
[CrossRef]

1972 (3)

P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

R. Rosei, D. W. Lynch, “Thermomodulation Spectra of Al, Au, and Cu,” Phys. Rev. B 5, 3883 (1972).
[CrossRef]

D. J. Chadi, J. P. Walter, L. Cohen, Y. Petroff, M. Balkanski, “Reflective and Electronic Band Structures of CdTe and HgTe,” Phys. Rev. B 5, 3058 (1972).
[CrossRef]

1971 (2)

D. E. Aspnes, “Measurement and Correction of First-Order Errors in Ellipsometry,” J. Opt. Soc. Am. 61, 1077 (1971).
[CrossRef]

P. L. Land, “A Discussion of the Region of Linear Operation of Photomultiplier,” Rev. Sci. Instrum. 42, 420 (1971).
[CrossRef]

1970 (4)

D. E. Aspnes, A. A. Studna, “Geometrically Exact Monochromator Alignment,” Rev. Sci. Instrum. 41, 966 (1970).
[CrossRef]

J. M. Bennett, “A Critical Evaluation of Rhomb-type Quarterwave Retarders,” Appl. Opt. 9, 2123 (1970).
[CrossRef] [PubMed]

M. L. Thèye, “Investigation of the Optical Properties of Au by Means of Thin Semitransparent Films,” Phys. Rev. B 2, 3060 (1970).
[CrossRef]

R. Greef, “An Automatic Ellipsometer for Use in Electrochemical Investigations,” Rev. Sci. Instrum. 41, 532 (1970).
[CrossRef]

1962 (2)

W. Budde, “Photoelectric Analysis of Polarized Light,” Appl. Opt. 1, 201 (1962).
[CrossRef]

M. Cardona, G. Harbeke, “Excitons at L Absorption Edge in Zinc Blende-Type Semiconductor,” Phys. Rev. Lett. 8, 90 (1962).
[CrossRef]

Arwin, H.

H. Arwin, D. E. Aspnes, D. R. Rhiger, “Properties of Hg0.71Cd0.29Te and Some Native Oxides by Spectroscopic Ellipsometry,” J. Appl. Phys. 54, 7132 (1983).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, “Dielectric Properties of Heavily Doped Crystalline and Amorphous Silicon from 1.5 to 6.0 eV,” Phys. Rev. B 29, 768 (1984).
[CrossRef]

D. E. Aspnes, “Dielectric Function and Optical Parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985 (1983).
[CrossRef]

H. Arwin, D. E. Aspnes, D. R. Rhiger, “Properties of Hg0.71Cd0.29Te and Some Native Oxides by Spectroscopic Ellipsometry,” J. Appl. Phys. 54, 7132 (1983).
[CrossRef]

D. E. Aspnes, E. Kinsbron, D. D. Bacon, “Optical Properties of Au: Sample Effects,” Phys. Rev. B 21, 3290, (1980).
[CrossRef]

D. E. Aspnes, A. A. Studna, “Method for Drift Stabilization and Photomultiplier Linearization for Photometric Ellipsometers and Polarimeters,” Rev. Sci. Instrum. 49, 291 (1978).
[CrossRef] [PubMed]

D. E. Aspnes, “High Precision Scanning Ellipsometer,” Appl. Opt. 14, 220, (1975).
[PubMed]

D. E. Aspnes, “Effects of Component Optical Activity in Data Reduction and Calibration of Rotating-Analyzer Ellipsometers,” J. Opt. Soc. Am. 64, 812 (1974).
[CrossRef]

D. E. Aspnes, “Fourier Transform Detection System for Rotating-Analyzer Ellipsometers,” Opt. Commun. 8, 222 (1973).
[CrossRef]

D. E. Aspnes, “Measurement and Correction of First-Order Errors in Ellipsometry,” J. Opt. Soc. Am. 61, 1077 (1971).
[CrossRef]

D. E. Aspnes, A. A. Studna, “Geometrically Exact Monochromator Alignment,” Rev. Sci. Instrum. 41, 966 (1970).
[CrossRef]

D. E. Aspnes, “Spectroscopic Ellipsometry of Solids,” in Optical Properties of Solids—New Developments, B. O. Seraphin, Ed. (North-Holland, Amsterdam, 1976), Chap. 15.

Azzam, R. M.

Azzam, R. M. A.

A.-R. M. Zaghloul, R. M. A. Azzam, “Single-Element Rotating-Polarizer Ellipsometer: psi Meter,” Surf. Sci. 96, 168 (1980).
[CrossRef]

R. M. A. Azzam, “A Sample Fourier Photopolarimeter with Rotating Polarizer and Analyzer for Measuring Jones and Mueller Matrices,” Opt. Commun. 25, 137 (1978).
[CrossRef]

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

Bacon, D. D.

D. E. Aspnes, E. Kinsbron, D. D. Bacon, “Optical Properties of Au: Sample Effects,” Phys. Rev. B 21, 3290, (1980).
[CrossRef]

Balkanski, M.

D. J. Chadi, J. P. Walter, L. Cohen, Y. Petroff, M. Balkanski, “Reflective and Electronic Band Structures of CdTe and HgTe,” Phys. Rev. B 5, 3058 (1972).
[CrossRef]

Bashara, N. M.

R. M. Azzam, N. M. Bashara, “Analysis of Systematic Errors in Rotating-Analyzer Ellipsometers,” J. Opt. Soc. Am. 64, 1459 (1974).
[CrossRef]

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

Bennett, J. M.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).

Budde, W.

Cardona, M.

L. Viña, C. Umbach, M. Cardona, L. Vodopyanov, “Ellipsometric Studies of Electronic Interband Transitions in CdxHg1−xTe,” Phys. Rev. B 29, 6752 (1984).
[CrossRef]

M. Cardona, G. Harbeke, “Excitons at L Absorption Edge in Zinc Blende-Type Semiconductor,” Phys. Rev. Lett. 8, 90 (1962).
[CrossRef]

Chadi, D. J.

D. J. Chadi, J. P. Walter, L. Cohen, Y. Petroff, M. Balkanski, “Reflective and Electronic Band Structures of CdTe and HgTe,” Phys. Rev. B 5, 3058 (1972).
[CrossRef]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Cohen, L.

D. J. Chadi, J. P. Walter, L. Cohen, Y. Petroff, M. Balkanski, “Reflective and Electronic Band Structures of CdTe and HgTe,” Phys. Rev. B 5, 3058 (1972).
[CrossRef]

Dill, F. H.

P. S. Hauge, F. H. Dill, “A Rotating-Compensator Fourier Ellipsometer,” Opt. Commun. 14, 431 (1975).
[CrossRef]

Faulkenberry, L. M.

L. M. Faulkenberry, An Introduction to Operational Amplifiers, with Linear IC Applications (Wiley, New York, 1980), Chap. 9.

Furtak, T. E.

M. V. Klein, T. E. Furtak, Optics (Wiley, NY, 1986), Chap. 9.

Greef, R.

R. Greef, “An Automatic Ellipsometer for Use in Electrochemical Investigations,” Rev. Sci. Instrum. 41, 532 (1970).
[CrossRef]

Harbeke, G.

M. Cardona, G. Harbeke, “Excitons at L Absorption Edge in Zinc Blende-Type Semiconductor,” Phys. Rev. Lett. 8, 90 (1962).
[CrossRef]

Hauge, P. S.

P. S. Hauge, “Survey of Methods for the Complete Determination of a State of Polarization,” Proc. Soc. Photo-Opt. Instrum. Eng. 88, 3 (1976).

P. S. Hauge, F. H. Dill, “A Rotating-Compensator Fourier Ellipsometer,” Opt. Commun. 14, 431 (1975).
[CrossRef]

Hilburn, J. L.

D. E. Johnson, J. L. Hilburn, Rapid Practical Designs of Active Filters (Wiley, New York, 1975).

Jackson, L.

L. Jackson, Digital Filters and Signal Processing (Kluwer Academic, Boston, 1986).

Johnson, D. E.

D. E. Johnson, J. L. Hilburn, Rapid Practical Designs of Active Filters (Wiley, New York, 1975).

D. E. Johnson, J. R. Johnson, H. P. Moore, A Handbook of Active Filters (Prentice-Hall, Englewood Cliffs, NJ, 1980).

Johnson, J. R.

D. E. Johnson, J. R. Johnson, H. P. Moore, A Handbook of Active Filters (Prentice-Hall, Englewood Cliffs, NJ, 1980).

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kawabata, S.

S. Kawabata, “Improved Measurement Method in Rotating-Analyzer Ellipsometry,” J. Opt. Soc. Am. A1, 706 (1984).
[CrossRef]

Kinsbron, E.

D. E. Aspnes, E. Kinsbron, D. D. Bacon, “Optical Properties of Au: Sample Effects,” Phys. Rev. B 21, 3290, (1980).
[CrossRef]

Klein, M. V.

M. V. Klein, T. E. Furtak, Optics (Wiley, NY, 1986), Chap. 9.

Land, P. L.

P. L. Land, “A Discussion of the Region of Linear Operation of Photomultiplier,” Rev. Sci. Instrum. 42, 420 (1971).
[CrossRef]

Lynch, D. W.

R. Rosei, D. W. Lynch, “Thermomodulation Spectra of Al, Au, and Cu,” Phys. Rev. B 5, 3883 (1972).
[CrossRef]

Moore, H. P.

D. E. Johnson, J. R. Johnson, H. P. Moore, A Handbook of Active Filters (Prentice-Hall, Englewood Cliffs, NJ, 1980).

Muller, R. H.

R. H. Muller, “Present Status of Automatic Ellipsometers,” Surf. Sci. 56, 19 (1976);A. C. Lowe, “Practical Limitations to Accuracy in a Nulling Automatic Wavelength-Scanning Ellipsometer,” Surf. Sci. 56, 134, (1976).
[CrossRef]

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Oxford U.P., London, 1957), pp. 260ff.

O'Handley, R. C.

Petroff, Y.

D. J. Chadi, J. P. Walter, L. Cohen, Y. Petroff, M. Balkanski, “Reflective and Electronic Band Structures of CdTe and HgTe,” Phys. Rev. B 5, 3058 (1972).
[CrossRef]

Rhiger, D. R.

H. Arwin, D. E. Aspnes, D. R. Rhiger, “Properties of Hg0.71Cd0.29Te and Some Native Oxides by Spectroscopic Ellipsometry,” J. Appl. Phys. 54, 7132 (1983).
[CrossRef]

Rosei, R.

R. Rosei, D. W. Lynch, “Thermomodulation Spectra of Al, Au, and Cu,” Phys. Rev. B 5, 3883 (1972).
[CrossRef]

Shurcliff, W. A.

W. A. Shurcliff, Polarized Light (Harvard U. P.Cambridge, 1962).

Studna, A. A.

D. E. Aspnes, A. A. Studna, “Method for Drift Stabilization and Photomultiplier Linearization for Photometric Ellipsometers and Polarimeters,” Rev. Sci. Instrum. 49, 291 (1978).
[CrossRef] [PubMed]

D. E. Aspnes, A. A. Studna, “Geometrically Exact Monochromator Alignment,” Rev. Sci. Instrum. 41, 966 (1970).
[CrossRef]

Thèye, M. L.

M. L. Thèye, “Investigation of the Optical Properties of Au by Means of Thin Semitransparent Films,” Phys. Rev. B 2, 3060 (1970).
[CrossRef]

Umbach, C.

L. Viña, C. Umbach, M. Cardona, L. Vodopyanov, “Ellipsometric Studies of Electronic Interband Transitions in CdxHg1−xTe,” Phys. Rev. B 29, 6752 (1984).
[CrossRef]

Viña, L.

L. Viña, C. Umbach, M. Cardona, L. Vodopyanov, “Ellipsometric Studies of Electronic Interband Transitions in CdxHg1−xTe,” Phys. Rev. B 29, 6752 (1984).
[CrossRef]

Vodopyanov, L.

L. Viña, C. Umbach, M. Cardona, L. Vodopyanov, “Ellipsometric Studies of Electronic Interband Transitions in CdxHg1−xTe,” Phys. Rev. B 29, 6752 (1984).
[CrossRef]

Walter, J. P.

D. J. Chadi, J. P. Walter, L. Cohen, Y. Petroff, M. Balkanski, “Reflective and Electronic Band Structures of CdTe and HgTe,” Phys. Rev. B 5, 3058 (1972).
[CrossRef]

Wijers, C.

C. Wijers, “A One-Wavelength in situ Alignment Method for Rotating Analyzer Ellipsometers,” Appl. Phys. B 27, 5 (1982).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).

Zaghloul, A.-R. M.

A.-R. M. Zaghloul, R. M. A. Azzam, “Single-Element Rotating-Polarizer Ellipsometer: psi Meter,” Surf. Sci. 96, 168 (1980).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

C. Wijers, “A One-Wavelength in situ Alignment Method for Rotating Analyzer Ellipsometers,” Appl. Phys. B 27, 5 (1982).
[CrossRef]

J. Appl. Phys. (1)

H. Arwin, D. E. Aspnes, D. R. Rhiger, “Properties of Hg0.71Cd0.29Te and Some Native Oxides by Spectroscopic Ellipsometry,” J. Appl. Phys. 54, 7132 (1983).
[CrossRef]

J. Opt. Soc. Am. (5)

Opt. Commun. (3)

R. M. A. Azzam, “A Sample Fourier Photopolarimeter with Rotating Polarizer and Analyzer for Measuring Jones and Mueller Matrices,” Opt. Commun. 25, 137 (1978).
[CrossRef]

D. E. Aspnes, “Fourier Transform Detection System for Rotating-Analyzer Ellipsometers,” Opt. Commun. 8, 222 (1973).
[CrossRef]

P. S. Hauge, F. H. Dill, “A Rotating-Compensator Fourier Ellipsometer,” Opt. Commun. 14, 431 (1975).
[CrossRef]

Phys. Rev. B (8)

D. E. Aspnes, “Dielectric Function and Optical Parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985 (1983).
[CrossRef]

D. E. Aspnes, “Dielectric Properties of Heavily Doped Crystalline and Amorphous Silicon from 1.5 to 6.0 eV,” Phys. Rev. B 29, 768 (1984).
[CrossRef]

L. Viña, C. Umbach, M. Cardona, L. Vodopyanov, “Ellipsometric Studies of Electronic Interband Transitions in CdxHg1−xTe,” Phys. Rev. B 29, 6752 (1984).
[CrossRef]

D. J. Chadi, J. P. Walter, L. Cohen, Y. Petroff, M. Balkanski, “Reflective and Electronic Band Structures of CdTe and HgTe,” Phys. Rev. B 5, 3058 (1972).
[CrossRef]

D. E. Aspnes, E. Kinsbron, D. D. Bacon, “Optical Properties of Au: Sample Effects,” Phys. Rev. B 21, 3290, (1980).
[CrossRef]

P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

R. Rosei, D. W. Lynch, “Thermomodulation Spectra of Al, Au, and Cu,” Phys. Rev. B 5, 3883 (1972).
[CrossRef]

M. L. Thèye, “Investigation of the Optical Properties of Au by Means of Thin Semitransparent Films,” Phys. Rev. B 2, 3060 (1970).
[CrossRef]

Phys. Rev. Lett. (1)

M. Cardona, G. Harbeke, “Excitons at L Absorption Edge in Zinc Blende-Type Semiconductor,” Phys. Rev. Lett. 8, 90 (1962).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

P. S. Hauge, “Survey of Methods for the Complete Determination of a State of Polarization,” Proc. Soc. Photo-Opt. Instrum. Eng. 88, 3 (1976).

Rev. Sci. Instrum. (4)

D. E. Aspnes, A. A. Studna, “Method for Drift Stabilization and Photomultiplier Linearization for Photometric Ellipsometers and Polarimeters,” Rev. Sci. Instrum. 49, 291 (1978).
[CrossRef] [PubMed]

R. Greef, “An Automatic Ellipsometer for Use in Electrochemical Investigations,” Rev. Sci. Instrum. 41, 532 (1970).
[CrossRef]

D. E. Aspnes, A. A. Studna, “Geometrically Exact Monochromator Alignment,” Rev. Sci. Instrum. 41, 966 (1970).
[CrossRef]

P. L. Land, “A Discussion of the Region of Linear Operation of Photomultiplier,” Rev. Sci. Instrum. 42, 420 (1971).
[CrossRef]

Surf. Sci. (2)

R. H. Muller, “Present Status of Automatic Ellipsometers,” Surf. Sci. 56, 19 (1976);A. C. Lowe, “Practical Limitations to Accuracy in a Nulling Automatic Wavelength-Scanning Ellipsometer,” Surf. Sci. 56, 134, (1976).
[CrossRef]

A.-R. M. Zaghloul, R. M. A. Azzam, “Single-Element Rotating-Polarizer Ellipsometer: psi Meter,” Surf. Sci. 96, 168 (1980).
[CrossRef]

Other (13)

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

D. E. Aspnes, “Spectroscopic Ellipsometry of Solids,” in Optical Properties of Solids—New Developments, B. O. Seraphin, Ed. (North-Holland, Amsterdam, 1976), Chap. 15.

EMI Gencom Inc., Plainview, NY, 11803.

Amperex Elec. Co., Hicksville, Long Island, NY.

W. A. Shurcliff, Polarized Light (Harvard U. P.Cambridge, 1962).

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).

L. Jackson, Digital Filters and Signal Processing (Kluwer Academic, Boston, 1986).

Optics For Research Inc., Caldwell, NJ 07006.

D. E. Johnson, J. R. Johnson, H. P. Moore, A Handbook of Active Filters (Prentice-Hall, Englewood Cliffs, NJ, 1980).

D. E. Johnson, J. L. Hilburn, Rapid Practical Designs of Active Filters (Wiley, New York, 1975).

L. M. Faulkenberry, An Introduction to Operational Amplifiers, with Linear IC Applications (Wiley, New York, 1980), Chap. 9.

M. V. Klein, T. E. Furtak, Optics (Wiley, NY, 1986), Chap. 9.

J. F. Nye, Physical Properties of Crystals (Oxford U.P., London, 1957), pp. 260ff.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the optical system of the RAP ellipsometer: 1, photomultiplier; 2, aperture; 3, focal lens; 4, cogged pulley; 5, analyzer; 6, timing belt; 7, sample; 8, polarizer; 9, quartz 1/4 λ retarder; 10, spherical mirror; 11, front mirror; 12, monochromator; 13, lamp; 14, bearing pulley; 15, motor; 16, shaft. ϕ = 68 ± 0.1°.

Fig. 2
Fig. 2

Schematic diagram of the electric measurement system.

Fig. 3
Fig. 3

Diagram of the feedback circuit to control the high voltage on the photomultiplier.

Fig. 4
Fig. 4

Diagram of the electric filter circuit: A1A3 and A4A5 are two active biquad filters; A7A9 acts as a precise rectifier; A10A11 forms a double low-pass filter to eliminate the residual ac ripple.

Fig. 5
Fig. 5

Frequency response patterns of filters that have narrow flat bandpass windows. Shaded areas indicate the neighboring channel interference that has been corrected in the program.

Fig. 6
Fig. 6

Signal forms for the Au film sample at two different wavelengths. The pictures in (a) were taken on the oscilloscope; the curve forms in part (b) were reproduced by the computer after the three ac components were measured.

Fig. 7
Fig. 7

Complex dielectric function of the Au film sample with a comparison to other authors' results.

Fig. 8
Fig. 8

Complex dielectric function of the CdTe crystal sample. The critical point energies of E1, E1 + Δ1, and E2 can be identified clearly.

Fig. 9
Fig. 9

Relative difference in |∊| and R from two successive scans on an Au film.

Equations (49)

Equations on this page are rendered with MathJax. Learn more.

I = k 0 + k 1 cos 2 A + k 2 sin 2 A = k 0 + k A cos ( 2 A + θ ) ,
k 0 = η ( cos 2 P + ρ 0 2 sin 2 P ) ,
k 1 = η ( cos 2 P ρ 0 2 sin 2 P ) = k A cos θ ,
k 2 = η ρ 0 sin 2 P cos Δ = k A sin θ ,
cos Δ = k 2 ( k 0 2 k 1 2 ) 1 / 2 ,
tan ψ = 1 tan P ( k 0 k 1 ) 1 / 2 ( k 0 + k 1 ) 1 / 2 .
k 0 = 1 n i = 1 n I i ,
k 1 = 2 n i = 1 n I i cos 2 A i ,
k 2 = 2 n i = 1 n I i sin 2 A i .
I = a 0 + n = 1 4 ( a n cos 2 n ω t + b n sin 2 n ω t ) ,
E = E 0 exp [ i ( k r ω t ) ] ,
H = H 0 exp [ i ( k r ω t ) ] .
E s = E 0 cos P exp ( i ϕ ) = A s exp ( i ϕ ) ,
E p = E 0 sin P exp ( i ϕ ) = A p exp ( i ϕ ) ,
ϕ = k r ω t .
E r s = E s r s = A s | r s | exp [ i ( ϕ + δ s ) ] = A s exp [ i ( ϕ + δ s ) ] ,
E r p = E p r p = A p | r p | exp [ i ( ϕ + δ p ) ] = A p exp [ i ( ϕ + δ p ) ] ,
( E rs ) 2 ( A s ) 2 + ( E rp ) 2 ( A p ) 2 2 E rs E rp cos Δ A s A p = sin 2 Δ .
Δ = δ s δ p .
E f = ( 1 0 ) ( cos A sin A sin A cos A ) ( r s 0 0 r p ) ( cos P sin P sin P cos P ) ( 1 0 ) E = ( r s cos A cos P + r p sin A sin P ) E ,
I | E f | 2 .
I = g 0 + g 1 cos A + g 2 cos 2 A + g 3 cos 3 A ,
g 0 = 2 η ( 1 + ρ 0 2 ) ,
g 1 = η ( 3 ρ 0 2 + 2 ρ 0 cos Δ ) ,
g 2 = 2 η ( 1 ρ 0 2 ) ,
g 3 = η ( 1 + ρ 0 2 2 ρ 0 cos Δ ) .
cos Δ = g 1 g 2 g 3 [ ( g 1 + g 3 ) ( g 1 + g 3 2 g 2 ) ] 1 / 2 ,
tan ψ = ρ 0 = ( g 1 + g 3 2 g 2 ) 1 / 2 ( g 1 + g 3 ) 1 / 2 ,
I = I max , as P = A = 0 ,
I = I min = 0 , as P = 90 ° , A = 180 ° .
ρ = r p r s = tan ψ exp ( i Δ ) .
s a = sin 2 ϕ + sin 2 ϕ tan 2 ϕ [ ( 1 ρ ) ( 1 + ρ ) ] 2 .
E f = ( 1 i γ A ) ( cos A sin A sin A cos A ) ( r s 0 0 r p ) ( cos P sin P sin P cos P ) ( 1 i γ P ) E = E fo + Δ E ,
Δ E = i γ ( cos A sin P cos P sin A ) ( r s + r p ) E .
γ A = 0.0010 ( h v / e V ) ,
I | E f | 2 = I 0 + Δ I ,
Δ I = g 4 ( sin A sin 2 A ) ,
g 4 = 8 η γ ρ 0 sin Δ .
I = g 0 + g 1 cos ( A + θ 1 ) + g 2 cos ( 2 A + θ 2 ) + g 3 cos 3 A ,
g 1 = ( g 1 2 + g 4 2 ) 1 / 2 g 1 + g 4 2 2 g 1 ,
g 2 = ( g 2 2 + g 4 2 ) 1 / 2 g 2 + g 4 2 2 g 2 .
g 1 = g 1 g 4 2 2 g 1 g 1 g 4 2 2 g 1 ,
g 2 = g 2 g 4 2 2 g 2 g 2 g 4 2 2 g 2 ,
g 4 2 4 γ 2 ( g 1 + g 3 ) ( g 1 + g 3 2 g 2 ) sin 2 Δ
cos Δ g 1 g 2 g 3 [ ( g 1 + g 3 ) ( g 1 + g 3 2 g 2 ) ] 1 / 2 .
δ s s = 4 ( 1 + cos 2 ϕ ) sin 2 ϕ δ ϕ 4 1 ρ 2 δ ρ .
δ n = b ( V n ) g = b [ V s / ( N + 1 ) ] g ,
G = n = 1 N δ n = b N [ V s / ( N + 1 ) ] N g .
Δ G G = N g Δ V s V s .

Metrics