Abstract

High-order neural networks have been shown to have impressive computational, storage, and learning capabilities. This performance is because the order or structure of a high-order neural network can be tailored to the order or structure of a problem. Thus, a neural network designed for a particular class of problems becomes specialized but also very efficient in solving those problems. Furthermore, a priori knowledge, such as geometric invariances, can be encoded in high-order networks. Because this knowledge does not have to be learned, these networks are very efficient in solving problems that utilize this knowledge.

© 1987 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical implementation of a translation-invariant second-order neural network for multiple-pattern classification

Sunao Kakizaki, Paul Horan, Akira Arimoto, Hiroshi Sako, Atsushi Saito, and Fumio Kugiya
Appl. Opt. 33(35) 8270-8280 (1994)

Optical implementation of a second-order translation-invariant network algorithm

Paul Horan, Andrew Jennings, Brian Kelly, and John Hegarty
Appl. Opt. 32(8) 1311-1321 (1993)

Optical implementation of a second-order neural network

Lin Zhang, Michael G. Robinson, and Kristina M. Johnson
Opt. Lett. 16(1) 45-47 (1991)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription