Abstract

Mercurous chloride crystals, recently synthesized in large good optical quality boules by vapor deposition, have been characterized as to their unusual acoustooptic properties. This material offers the potential for superior performance Bragg cells for signal processing and tunable filters. We have developed fabrication techniques to overcome severe problems associated with its high chemical reactivity, designed transducer structures, and built and tested a number of devices.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Barta, “Preparation of Mercurous Chloride Monocrystals,” Krist. Tech. 5, 541 (1970).
    [Crossref]
  2. I. M. Silvestrova et al., “Acousto-optical Properties of Calomel Crystals Hg2Cl2,” Sov. Phys. Crystallogr. 20, 649 (1975);Sov. Phys. Crystallogr. 20, 649 (1976).
  3. N. B. Singh, R. H. Hopkins, R. Mazelsky, M. Gottlieb, “Growth Rates and Characteristics of Mercurous Chloride Crystals,” J. Cryst. Growth 83, 334 (1987).
    [Crossref]
  4. A. P. Goutzoulis, M. Gottlieb, N. B. Singh, “Mercurous Chloride Acoustooptic Bragg Cells: a New Class of Long Delay Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 753, 29 (1987).
  5. A. W. Warner, D. L. White, W. A. Bonner, “Acoustooptic Light Deflectors Using Optical Activity in Paratellurite,” J. Appl. Phys. 43, 4489 (1972).
    [Crossref]
  6. K. A. McCarthy, A. P. Goutzoulis, M. Gottlieb, N. B. Singh, “Optical Rotatory Power in Crystals of the Mercurous Halides and Tellurium Dioxide,” to be published in Optics. Commun.
  7. E. H. Young, S-K Yao, “Design Considerations for Acoustooptic Devices,” Proc. IEEE 69, 54 (1981).
    [Crossref]
  8. I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics Ultrason., SU-23, 1 (1976).
  9. G. B. Brandt, M. Gottlieb, H. B. Singh, E. P. Supertzi, “Mercurous Chloride Acoustooptic Tunable Imaging Filter,” J. Opt. Soc. Am. A 3 (13), P 63 (1986).

1987 (2)

N. B. Singh, R. H. Hopkins, R. Mazelsky, M. Gottlieb, “Growth Rates and Characteristics of Mercurous Chloride Crystals,” J. Cryst. Growth 83, 334 (1987).
[Crossref]

A. P. Goutzoulis, M. Gottlieb, N. B. Singh, “Mercurous Chloride Acoustooptic Bragg Cells: a New Class of Long Delay Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 753, 29 (1987).

1986 (1)

G. B. Brandt, M. Gottlieb, H. B. Singh, E. P. Supertzi, “Mercurous Chloride Acoustooptic Tunable Imaging Filter,” J. Opt. Soc. Am. A 3 (13), P 63 (1986).

1981 (1)

E. H. Young, S-K Yao, “Design Considerations for Acoustooptic Devices,” Proc. IEEE 69, 54 (1981).
[Crossref]

1976 (1)

I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics Ultrason., SU-23, 1 (1976).

1975 (1)

I. M. Silvestrova et al., “Acousto-optical Properties of Calomel Crystals Hg2Cl2,” Sov. Phys. Crystallogr. 20, 649 (1975);Sov. Phys. Crystallogr. 20, 649 (1976).

1972 (1)

A. W. Warner, D. L. White, W. A. Bonner, “Acoustooptic Light Deflectors Using Optical Activity in Paratellurite,” J. Appl. Phys. 43, 4489 (1972).
[Crossref]

1970 (1)

C. Barta, “Preparation of Mercurous Chloride Monocrystals,” Krist. Tech. 5, 541 (1970).
[Crossref]

Barta, C.

C. Barta, “Preparation of Mercurous Chloride Monocrystals,” Krist. Tech. 5, 541 (1970).
[Crossref]

Bonner, W. A.

A. W. Warner, D. L. White, W. A. Bonner, “Acoustooptic Light Deflectors Using Optical Activity in Paratellurite,” J. Appl. Phys. 43, 4489 (1972).
[Crossref]

Brandt, G. B.

G. B. Brandt, M. Gottlieb, H. B. Singh, E. P. Supertzi, “Mercurous Chloride Acoustooptic Tunable Imaging Filter,” J. Opt. Soc. Am. A 3 (13), P 63 (1986).

Chang, I. C.

I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics Ultrason., SU-23, 1 (1976).

Gottlieb, M.

N. B. Singh, R. H. Hopkins, R. Mazelsky, M. Gottlieb, “Growth Rates and Characteristics of Mercurous Chloride Crystals,” J. Cryst. Growth 83, 334 (1987).
[Crossref]

A. P. Goutzoulis, M. Gottlieb, N. B. Singh, “Mercurous Chloride Acoustooptic Bragg Cells: a New Class of Long Delay Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 753, 29 (1987).

G. B. Brandt, M. Gottlieb, H. B. Singh, E. P. Supertzi, “Mercurous Chloride Acoustooptic Tunable Imaging Filter,” J. Opt. Soc. Am. A 3 (13), P 63 (1986).

K. A. McCarthy, A. P. Goutzoulis, M. Gottlieb, N. B. Singh, “Optical Rotatory Power in Crystals of the Mercurous Halides and Tellurium Dioxide,” to be published in Optics. Commun.

Goutzoulis, A. P.

A. P. Goutzoulis, M. Gottlieb, N. B. Singh, “Mercurous Chloride Acoustooptic Bragg Cells: a New Class of Long Delay Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 753, 29 (1987).

K. A. McCarthy, A. P. Goutzoulis, M. Gottlieb, N. B. Singh, “Optical Rotatory Power in Crystals of the Mercurous Halides and Tellurium Dioxide,” to be published in Optics. Commun.

Hopkins, R. H.

N. B. Singh, R. H. Hopkins, R. Mazelsky, M. Gottlieb, “Growth Rates and Characteristics of Mercurous Chloride Crystals,” J. Cryst. Growth 83, 334 (1987).
[Crossref]

Mazelsky, R.

N. B. Singh, R. H. Hopkins, R. Mazelsky, M. Gottlieb, “Growth Rates and Characteristics of Mercurous Chloride Crystals,” J. Cryst. Growth 83, 334 (1987).
[Crossref]

McCarthy, K. A.

K. A. McCarthy, A. P. Goutzoulis, M. Gottlieb, N. B. Singh, “Optical Rotatory Power in Crystals of the Mercurous Halides and Tellurium Dioxide,” to be published in Optics. Commun.

Silvestrova, I. M.

I. M. Silvestrova et al., “Acousto-optical Properties of Calomel Crystals Hg2Cl2,” Sov. Phys. Crystallogr. 20, 649 (1975);Sov. Phys. Crystallogr. 20, 649 (1976).

Singh, H. B.

G. B. Brandt, M. Gottlieb, H. B. Singh, E. P. Supertzi, “Mercurous Chloride Acoustooptic Tunable Imaging Filter,” J. Opt. Soc. Am. A 3 (13), P 63 (1986).

Singh, N. B.

N. B. Singh, R. H. Hopkins, R. Mazelsky, M. Gottlieb, “Growth Rates and Characteristics of Mercurous Chloride Crystals,” J. Cryst. Growth 83, 334 (1987).
[Crossref]

A. P. Goutzoulis, M. Gottlieb, N. B. Singh, “Mercurous Chloride Acoustooptic Bragg Cells: a New Class of Long Delay Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 753, 29 (1987).

K. A. McCarthy, A. P. Goutzoulis, M. Gottlieb, N. B. Singh, “Optical Rotatory Power in Crystals of the Mercurous Halides and Tellurium Dioxide,” to be published in Optics. Commun.

Supertzi, E. P.

G. B. Brandt, M. Gottlieb, H. B. Singh, E. P. Supertzi, “Mercurous Chloride Acoustooptic Tunable Imaging Filter,” J. Opt. Soc. Am. A 3 (13), P 63 (1986).

Warner, A. W.

A. W. Warner, D. L. White, W. A. Bonner, “Acoustooptic Light Deflectors Using Optical Activity in Paratellurite,” J. Appl. Phys. 43, 4489 (1972).
[Crossref]

White, D. L.

A. W. Warner, D. L. White, W. A. Bonner, “Acoustooptic Light Deflectors Using Optical Activity in Paratellurite,” J. Appl. Phys. 43, 4489 (1972).
[Crossref]

Yao, S-K

E. H. Young, S-K Yao, “Design Considerations for Acoustooptic Devices,” Proc. IEEE 69, 54 (1981).
[Crossref]

Young, E. H.

E. H. Young, S-K Yao, “Design Considerations for Acoustooptic Devices,” Proc. IEEE 69, 54 (1981).
[Crossref]

IEEE Trans. Sonics Ultrason. (1)

I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics Ultrason., SU-23, 1 (1976).

J. Appl. Phys. (1)

A. W. Warner, D. L. White, W. A. Bonner, “Acoustooptic Light Deflectors Using Optical Activity in Paratellurite,” J. Appl. Phys. 43, 4489 (1972).
[Crossref]

J. Cryst. Growth (1)

N. B. Singh, R. H. Hopkins, R. Mazelsky, M. Gottlieb, “Growth Rates and Characteristics of Mercurous Chloride Crystals,” J. Cryst. Growth 83, 334 (1987).
[Crossref]

J. Opt. Soc. Am. A (1)

G. B. Brandt, M. Gottlieb, H. B. Singh, E. P. Supertzi, “Mercurous Chloride Acoustooptic Tunable Imaging Filter,” J. Opt. Soc. Am. A 3 (13), P 63 (1986).

Krist. Tech. (1)

C. Barta, “Preparation of Mercurous Chloride Monocrystals,” Krist. Tech. 5, 541 (1970).
[Crossref]

Proc. IEEE (1)

E. H. Young, S-K Yao, “Design Considerations for Acoustooptic Devices,” Proc. IEEE 69, 54 (1981).
[Crossref]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

A. P. Goutzoulis, M. Gottlieb, N. B. Singh, “Mercurous Chloride Acoustooptic Bragg Cells: a New Class of Long Delay Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 753, 29 (1987).

Sov. Phys. Crystallogr. (1)

I. M. Silvestrova et al., “Acousto-optical Properties of Calomel Crystals Hg2Cl2,” Sov. Phys. Crystallogr. 20, 649 (1975);Sov. Phys. Crystallogr. 20, 649 (1976).

Other (1)

K. A. McCarthy, A. P. Goutzoulis, M. Gottlieb, N. B. Singh, “Optical Rotatory Power in Crystals of the Mercurous Halides and Tellurium Dioxide,” to be published in Optics. Commun.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Mercurous chloride crystal boules.

Fig. 2
Fig. 2

Optical transmission through a crystal of 8-mm thickness.

Fig. 3
Fig. 3

Acoustic attenuation of mercurous chloride.

Fig. 4
Fig. 4

Polished mercurous chloride crystal.

Fig. 5
Fig. 5

Site of pinhole in buffer layer on crystal surface; 200× magnification.

Fig. 6
Fig. 6

Compression bonding system.

Fig. 7
Fig. 7

Anisotropic Bragg angles for mercurous chloride.

Fig. 8
Fig. 8

Resolution curves for mercurous chloride Bragg cell design.

Fig. 9
Fig. 9

Measured response of Bragg cell with indium-based transducer bond.

Fig. 10
Fig. 10

Measured response of Bragg cell with lead based transducer bond.

Fig. 11
Fig. 11

Measured tuning relation for mercurous chloride AOTF, θi = 10°.

Fig. 12
Fig. 12

Measured resolution of mercurous chloride AOTF, θi = 10°.

Fig. 13
Fig. 13

Mercurous chloride imaging AOTF.

Tables (1)

Tables Icon

Table I Properties of Mercurous Chloride

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f 0 = ( V / λ ) ( n i 2 n d 2 ) 1 / 2 ,
f 0 = V ( 2 n 0 R 180 λ ) 1 / 2 ,
BW f c = ( 3.6 L 0 L ) 1 / 2 ,
L 0 = n Λ 2 λ 0 ,

Metrics