Abstract

The mechanism for fine grinding using diamond tools is shown to depend on the properties of the glass, the acidity of the grinding fluid, as well as the chemical and mechanical properties of the abrasive bonding material. Knowledge of the mechanism is essential for the implementation of this technology for the deterministic fabrication of precision optical surfaces. We find that the fracture mechanism is preferred to plastic scratching for most applications.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Izumitani, Hoya Corp., Tokyo, Japan; private communication.
  2. P. Hed, D. F. Edwards, “Optical Glass Fabrication Technology. 2: Relationship Between Surface Roughness and Subsurface Damage,” Appl. Opt. 26, 000 same issue (1987).
  3. T. V. Vladimirova, N. Ya Gorban, V. P. Maslov, T. S. Melnik, V. A. Odarich, “Investigation of the Optical Properties and Structure of the Surface Layer of Pyroceramic,” Sov. J. Opt. Technol. 46, 537 (1979).
  4. G. Wright, J. B. Bryan, “Proposed Method of Producing Large Optical Mirrors: Single-Point Diamond Crushing Followed by Polishing with a Small-Area Tool,” Opt. Eng. 25 (9) 1021 (1986);we measured damage layers 50–75 μm deep for the above diamond crushed surfaces.
    [CrossRef]
  5. Corning Glass Works, Corning, NY.
  6. Schott Optical Glass, Inc., Dureya, PA.
  7. Everflo, Mar-Ca-Cel-Corp., Brooklyn, NY.
  8. P. P. Hed, D. F. Edwards, “Preventing Rust Accumulation on Iron Optical Lapping Tools,” Appl. Opt. 25, 4505 (1986).
    [CrossRef] [PubMed]
  9. P. P. Hed, N. J. Brown, D. F. Edwards, R. S. Stolcis, “Fine Grinding of Optical Glass with Bound Abrasives,” Lawrence Livermore National Laboratory, Livermore, CA, (1985).
  10. Precision Diamond Tool Co., Elgin, IL.
  11. Elgin Diamond Products Co., Elgin, IL.
  12. Frater's Facsimilike P.A. Patterson Co., Inc., Drexel Hill, PA.
  13. Surfanalyzer model 2000, Federal Products Corp., Providence, RI.
  14. Rust-Lick B-CD-2 water soluble corrosion inhibitor coolant concentrate, Devcon Corp., Danvers, MA.
  15. Model 6UR-2, Precision Polishmaster, R. Howard Strasbaugh, Inc., Huntington Beach, CA.
  16. T. S. Izumitani, Optical Glass (Kyoritsu Shuppan Co., Tokyo;Lawrence Livermore National Laboratory, UCRL-TRANS-12065, Oct.1985).
  17. S. V. Kryukova, V. V. Bondar, “Effect of Degree of Vacuum in Grindability of Optical Glasses,” Sov. J. Opt. Technol. 49, 32 (1982).
  18. G. S. Khodakov, V. P. Korovkin, V. M. Altshuler, “Physical Principles of the Fine Grinding of Optical Glass With a Diamond Tool,” Sov. J. Opt. Technol. 47, 552 (1980).
  19. G. R. Alexander, W. M. Heston, R. K. Iler, “The Solubility of Amorphous Silica in Water,” J. Phys. Chem. 58, 453 (1954).
    [CrossRef]
  20. Gih-Horng Chen, “High Speed Fabrication of Aspherical Surfaces,” University of Rochester, Rochester, New York PhD. Thesis, 1977.

1987 (1)

P. Hed, D. F. Edwards, “Optical Glass Fabrication Technology. 2: Relationship Between Surface Roughness and Subsurface Damage,” Appl. Opt. 26, 000 same issue (1987).

1986 (2)

G. Wright, J. B. Bryan, “Proposed Method of Producing Large Optical Mirrors: Single-Point Diamond Crushing Followed by Polishing with a Small-Area Tool,” Opt. Eng. 25 (9) 1021 (1986);we measured damage layers 50–75 μm deep for the above diamond crushed surfaces.
[CrossRef]

P. P. Hed, D. F. Edwards, “Preventing Rust Accumulation on Iron Optical Lapping Tools,” Appl. Opt. 25, 4505 (1986).
[CrossRef] [PubMed]

1982 (1)

S. V. Kryukova, V. V. Bondar, “Effect of Degree of Vacuum in Grindability of Optical Glasses,” Sov. J. Opt. Technol. 49, 32 (1982).

1980 (1)

G. S. Khodakov, V. P. Korovkin, V. M. Altshuler, “Physical Principles of the Fine Grinding of Optical Glass With a Diamond Tool,” Sov. J. Opt. Technol. 47, 552 (1980).

1979 (1)

T. V. Vladimirova, N. Ya Gorban, V. P. Maslov, T. S. Melnik, V. A. Odarich, “Investigation of the Optical Properties and Structure of the Surface Layer of Pyroceramic,” Sov. J. Opt. Technol. 46, 537 (1979).

1954 (1)

G. R. Alexander, W. M. Heston, R. K. Iler, “The Solubility of Amorphous Silica in Water,” J. Phys. Chem. 58, 453 (1954).
[CrossRef]

Alexander, G. R.

G. R. Alexander, W. M. Heston, R. K. Iler, “The Solubility of Amorphous Silica in Water,” J. Phys. Chem. 58, 453 (1954).
[CrossRef]

Altshuler, V. M.

G. S. Khodakov, V. P. Korovkin, V. M. Altshuler, “Physical Principles of the Fine Grinding of Optical Glass With a Diamond Tool,” Sov. J. Opt. Technol. 47, 552 (1980).

Bondar, V. V.

S. V. Kryukova, V. V. Bondar, “Effect of Degree of Vacuum in Grindability of Optical Glasses,” Sov. J. Opt. Technol. 49, 32 (1982).

Brown, N. J.

P. P. Hed, N. J. Brown, D. F. Edwards, R. S. Stolcis, “Fine Grinding of Optical Glass with Bound Abrasives,” Lawrence Livermore National Laboratory, Livermore, CA, (1985).

Bryan, J. B.

G. Wright, J. B. Bryan, “Proposed Method of Producing Large Optical Mirrors: Single-Point Diamond Crushing Followed by Polishing with a Small-Area Tool,” Opt. Eng. 25 (9) 1021 (1986);we measured damage layers 50–75 μm deep for the above diamond crushed surfaces.
[CrossRef]

Chen, Gih-Horng

Gih-Horng Chen, “High Speed Fabrication of Aspherical Surfaces,” University of Rochester, Rochester, New York PhD. Thesis, 1977.

Edwards, D. F.

P. Hed, D. F. Edwards, “Optical Glass Fabrication Technology. 2: Relationship Between Surface Roughness and Subsurface Damage,” Appl. Opt. 26, 000 same issue (1987).

P. P. Hed, D. F. Edwards, “Preventing Rust Accumulation on Iron Optical Lapping Tools,” Appl. Opt. 25, 4505 (1986).
[CrossRef] [PubMed]

P. P. Hed, N. J. Brown, D. F. Edwards, R. S. Stolcis, “Fine Grinding of Optical Glass with Bound Abrasives,” Lawrence Livermore National Laboratory, Livermore, CA, (1985).

Hed, P.

P. Hed, D. F. Edwards, “Optical Glass Fabrication Technology. 2: Relationship Between Surface Roughness and Subsurface Damage,” Appl. Opt. 26, 000 same issue (1987).

Hed, P. P.

P. P. Hed, D. F. Edwards, “Preventing Rust Accumulation on Iron Optical Lapping Tools,” Appl. Opt. 25, 4505 (1986).
[CrossRef] [PubMed]

P. P. Hed, N. J. Brown, D. F. Edwards, R. S. Stolcis, “Fine Grinding of Optical Glass with Bound Abrasives,” Lawrence Livermore National Laboratory, Livermore, CA, (1985).

Heston, W. M.

G. R. Alexander, W. M. Heston, R. K. Iler, “The Solubility of Amorphous Silica in Water,” J. Phys. Chem. 58, 453 (1954).
[CrossRef]

Iler, R. K.

G. R. Alexander, W. M. Heston, R. K. Iler, “The Solubility of Amorphous Silica in Water,” J. Phys. Chem. 58, 453 (1954).
[CrossRef]

Izumitani, T.

T. Izumitani, Hoya Corp., Tokyo, Japan; private communication.

Izumitani, T. S.

T. S. Izumitani, Optical Glass (Kyoritsu Shuppan Co., Tokyo;Lawrence Livermore National Laboratory, UCRL-TRANS-12065, Oct.1985).

Khodakov, G. S.

G. S. Khodakov, V. P. Korovkin, V. M. Altshuler, “Physical Principles of the Fine Grinding of Optical Glass With a Diamond Tool,” Sov. J. Opt. Technol. 47, 552 (1980).

Korovkin, V. P.

G. S. Khodakov, V. P. Korovkin, V. M. Altshuler, “Physical Principles of the Fine Grinding of Optical Glass With a Diamond Tool,” Sov. J. Opt. Technol. 47, 552 (1980).

Kryukova, S. V.

S. V. Kryukova, V. V. Bondar, “Effect of Degree of Vacuum in Grindability of Optical Glasses,” Sov. J. Opt. Technol. 49, 32 (1982).

Maslov, V. P.

T. V. Vladimirova, N. Ya Gorban, V. P. Maslov, T. S. Melnik, V. A. Odarich, “Investigation of the Optical Properties and Structure of the Surface Layer of Pyroceramic,” Sov. J. Opt. Technol. 46, 537 (1979).

Melnik, T. S.

T. V. Vladimirova, N. Ya Gorban, V. P. Maslov, T. S. Melnik, V. A. Odarich, “Investigation of the Optical Properties and Structure of the Surface Layer of Pyroceramic,” Sov. J. Opt. Technol. 46, 537 (1979).

Odarich, V. A.

T. V. Vladimirova, N. Ya Gorban, V. P. Maslov, T. S. Melnik, V. A. Odarich, “Investigation of the Optical Properties and Structure of the Surface Layer of Pyroceramic,” Sov. J. Opt. Technol. 46, 537 (1979).

Stolcis, R. S.

P. P. Hed, N. J. Brown, D. F. Edwards, R. S. Stolcis, “Fine Grinding of Optical Glass with Bound Abrasives,” Lawrence Livermore National Laboratory, Livermore, CA, (1985).

Vladimirova, T. V.

T. V. Vladimirova, N. Ya Gorban, V. P. Maslov, T. S. Melnik, V. A. Odarich, “Investigation of the Optical Properties and Structure of the Surface Layer of Pyroceramic,” Sov. J. Opt. Technol. 46, 537 (1979).

Wright, G.

G. Wright, J. B. Bryan, “Proposed Method of Producing Large Optical Mirrors: Single-Point Diamond Crushing Followed by Polishing with a Small-Area Tool,” Opt. Eng. 25 (9) 1021 (1986);we measured damage layers 50–75 μm deep for the above diamond crushed surfaces.
[CrossRef]

Ya Gorban, N.

T. V. Vladimirova, N. Ya Gorban, V. P. Maslov, T. S. Melnik, V. A. Odarich, “Investigation of the Optical Properties and Structure of the Surface Layer of Pyroceramic,” Sov. J. Opt. Technol. 46, 537 (1979).

Appl. Opt. (2)

P. P. Hed, D. F. Edwards, “Preventing Rust Accumulation on Iron Optical Lapping Tools,” Appl. Opt. 25, 4505 (1986).
[CrossRef] [PubMed]

P. Hed, D. F. Edwards, “Optical Glass Fabrication Technology. 2: Relationship Between Surface Roughness and Subsurface Damage,” Appl. Opt. 26, 000 same issue (1987).

J. Phys. Chem. (1)

G. R. Alexander, W. M. Heston, R. K. Iler, “The Solubility of Amorphous Silica in Water,” J. Phys. Chem. 58, 453 (1954).
[CrossRef]

Opt. Eng. (1)

G. Wright, J. B. Bryan, “Proposed Method of Producing Large Optical Mirrors: Single-Point Diamond Crushing Followed by Polishing with a Small-Area Tool,” Opt. Eng. 25 (9) 1021 (1986);we measured damage layers 50–75 μm deep for the above diamond crushed surfaces.
[CrossRef]

Sov. J. Opt. Technol. (1)

S. V. Kryukova, V. V. Bondar, “Effect of Degree of Vacuum in Grindability of Optical Glasses,” Sov. J. Opt. Technol. 49, 32 (1982).

Sov. J. Opt. Technol. (2)

G. S. Khodakov, V. P. Korovkin, V. M. Altshuler, “Physical Principles of the Fine Grinding of Optical Glass With a Diamond Tool,” Sov. J. Opt. Technol. 47, 552 (1980).

T. V. Vladimirova, N. Ya Gorban, V. P. Maslov, T. S. Melnik, V. A. Odarich, “Investigation of the Optical Properties and Structure of the Surface Layer of Pyroceramic,” Sov. J. Opt. Technol. 46, 537 (1979).

Other (13)

Corning Glass Works, Corning, NY.

Schott Optical Glass, Inc., Dureya, PA.

Everflo, Mar-Ca-Cel-Corp., Brooklyn, NY.

P. P. Hed, N. J. Brown, D. F. Edwards, R. S. Stolcis, “Fine Grinding of Optical Glass with Bound Abrasives,” Lawrence Livermore National Laboratory, Livermore, CA, (1985).

Precision Diamond Tool Co., Elgin, IL.

Elgin Diamond Products Co., Elgin, IL.

Frater's Facsimilike P.A. Patterson Co., Inc., Drexel Hill, PA.

Surfanalyzer model 2000, Federal Products Corp., Providence, RI.

Rust-Lick B-CD-2 water soluble corrosion inhibitor coolant concentrate, Devcon Corp., Danvers, MA.

Model 6UR-2, Precision Polishmaster, R. Howard Strasbaugh, Inc., Huntington Beach, CA.

T. S. Izumitani, Optical Glass (Kyoritsu Shuppan Co., Tokyo;Lawrence Livermore National Laboratory, UCRL-TRANS-12065, Oct.1985).

Gih-Horng Chen, “High Speed Fabrication of Aspherical Surfaces,” University of Rochester, Rochester, New York PhD. Thesis, 1977.

T. Izumitani, Hoya Corp., Tokyo, Japan; private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Multiple-pellet diamond grinding tools.

Fig. 2
Fig. 2

Cumulative removal of BK-7 glass with and without additive.

Fig. 3
Fig. 3

Microphotograph (90×) of BK-7 with and without Rust-Lick.

Fig. 4
Fig. 4

Surface roughness for BK-7 with Rust-Lick.

Fig. 5
Fig. 5

Surface roughness for BK-7 without Rust-Lick.

Fig. 6
Fig. 6

Cumulative removal of fused silica with and without additive.

Fig. 7
Fig. 7

Microphotograph (90×) of fused silica with and without Rust-Lick.

Fig. 8
Fig. 8

Surface finishes for fused silica with and without Rust-Lick.

Fig. 9
Fig. 9

Surface roughness for fused silica without Rust-Lick.

Fig. 10
Fig. 10

Typical profilometer trace showing scratches superimposed on the rough surface.

Fig. 11
Fig. 11

Cumulative removal of BK-7 glass for 9-μm diamond abrasive in several different bonding materials.

Fig. 12
Fig. 12

Cumulative removal of fused silica for 9-μm diamond abrasive in several different bonding materials.

Tables (4)

Tables Icon

Table I Properties of Diamond Pellets for Multipellet Grinding

Tables Icon

Table II Average Scratch Count, Cumulative Removal and Surface Roughness After 10 min of Grinding

Tables Icon

Table III Cumulative Removal for Fused Silica after 10-min Grind with Water

Tables Icon

Table IV 9-μm Diamond Abrasive with Water

Metrics