Abstract

The photothermal microscope is a laser-based technique which utilizes the crossed-beam thermal lens to measure simultaneously both absorbance and thermal diffusivity within small probe volumes. The microscope provides images with spatial resolution better than 1 μm3 in a simple optical design. High resolution images of histological and botanical samples are presented.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Duncan, J. Reintjes, T. J. Manuccia, “Scanning Coherent Anti-Stokes Raman Microscope,” Opt. Lett. 7, 350 (1982).
    [CrossRef] [PubMed]
  2. R. L. Farrow, L. A. Rahn, “Spatially Resolved Infrared Absorption Measurements: Application of an Optical Stark Effect,” Opt. Lett. 6, 108 (1981).
    [CrossRef] [PubMed]
  3. J. E. M. Goldsmith, “Spatially Resolved Saturated Absorption Spectroscopy in Flames,” Opt. Lett. 6, 525 (1981).
    [CrossRef] [PubMed]
  4. G. J. Blanchard, M. J. Wirth, “Measurement of Small Absorbances by Picosecond Pump-Probe Spectrometry,” Anal. Chem. 58, 532 (1986).
    [CrossRef]
  5. M. J. Pelletier, H. R. Thorsheim, J. M. Harris, “Thermal Grating Calorimetry,” Anal. Chem. 54, 239 (1982).
    [CrossRef]
  6. U. Dürig, D. W. Pohl, F. Rohner, “Near-Field Optical-Scanning Microscopy,” J. Appl. Phys. 59, 3318 (1986).
    [CrossRef]
  7. A. Boyde, “Stereoscopic Images in Confocal (Tandem Scanning) Microscopy,” Science 230, 1270 (1985).
    [CrossRef] [PubMed]
  8. A. Rosencwaig, “Thermal Wave Imaging,” Science, 218, 223 (1982),
    [CrossRef] [PubMed]
  9. W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal Deflection Spectroscopy and Detection,” Appl. Opt. 20, 1333 (1981).
    [CrossRef] [PubMed]
  10. C. C. Williams, “High-Resolution Photothermal Laser Probe,” IEEE Trans. Sonics Ultrason. SU-32, 365 (1985).
    [CrossRef]
  11. D. S. Burgi, T. G. Nolan, J. A. Risfelt, N. J. Dovichi, “Photothermal Refraction for Scanning Laser Microscope,” Opt. Eng. 23, 756 (1984).
    [CrossRef]
  12. D. S. Burgi, W. A. Weimer, T. G. Nolan, N. J. Dovichi, “Crossed-Beam Thermal Lens Microscope,” Am. Inst. Phys. 146, 664 (1986).
  13. D. S. Burgi, N. J. Dovichi, “Crossed-Beam Thermal Lens as a Scanning Laser Microscope,” in Proceedings, American Institute of Physics Conference, in press.
  14. N. J. Dovichi, “Thermo-Optical Spectrophotometries in Analytical Chemistry,” in CRC Critical Review in Analytical Chemistry (CRC Press, Cleveland, in press).
  15. J. R. Whinnery, “Laser Measurement of Optical Absorption in Liquids,” Acc. Chem. Res. 7, 225 (1974).
    [CrossRef]
  16. M. E. Long, R. L. Swoford, A. C. Albrech, “Thermal Lens Technique: A New Method of Absorption Spectroscopy,” Science 191, 183 (1976).
    [CrossRef] [PubMed]
  17. J. M. Harris, N. J. Dovichi, “Thermal Lens Calorimetry,” Anal. Chem. 52, 695A (1980).
    [CrossRef]
  18. N. J. Dovichi, J. M. Harris, “Time Resolved Thermal Lens Calorimetry,” Anal. Chem. 53, 106 (1981).
    [CrossRef]
  19. N. J. Dovichi, T. G. Nolan, W. A. Weimer, “Theory for Laser-Induced Photothermal Refraction,” Anal. Chem. 56, 1700 (1984).
    [CrossRef]
  20. T. G. Nolan, W. A. Weimer, N. J. Dovichi, “Laser Induced Photothermal Refraction for Small Volume Absorbance Determination,” Anal. Chem. 56, 1704 (1984).
    [CrossRef]
  21. T. G. Nolan, N. J. Dovichi, “Ultrasensitive Detection of Iron by Crossed-Beam Thermal Lens Measurements,” IEEE Circuits Devices Mag. 2, 54 (1986).
    [CrossRef]
  22. W. A. Weimer, N. J. Dovichi, “Simple Model for the Time Dependence of the Periodically Excited Crossed-Beam Thermal Lens,” J. Appl. Phys. 59, 225 (1986).
    [CrossRef]
  23. Y. F. Cheng, T. K. Lee, D. S. Burgi, N. J. Dovichi, “Two Color Photothermal Microscope,” in preparation.
  24. W. A. Weimer, N. J. Dovichi, “Multichannel Crossed-Beam Thermal Lens Measurements for Absolute Absorbance Determination with Pulsed Laser Excitation,” Anal. Chem., submitted.

1986 (5)

G. J. Blanchard, M. J. Wirth, “Measurement of Small Absorbances by Picosecond Pump-Probe Spectrometry,” Anal. Chem. 58, 532 (1986).
[CrossRef]

U. Dürig, D. W. Pohl, F. Rohner, “Near-Field Optical-Scanning Microscopy,” J. Appl. Phys. 59, 3318 (1986).
[CrossRef]

D. S. Burgi, W. A. Weimer, T. G. Nolan, N. J. Dovichi, “Crossed-Beam Thermal Lens Microscope,” Am. Inst. Phys. 146, 664 (1986).

T. G. Nolan, N. J. Dovichi, “Ultrasensitive Detection of Iron by Crossed-Beam Thermal Lens Measurements,” IEEE Circuits Devices Mag. 2, 54 (1986).
[CrossRef]

W. A. Weimer, N. J. Dovichi, “Simple Model for the Time Dependence of the Periodically Excited Crossed-Beam Thermal Lens,” J. Appl. Phys. 59, 225 (1986).
[CrossRef]

1985 (2)

C. C. Williams, “High-Resolution Photothermal Laser Probe,” IEEE Trans. Sonics Ultrason. SU-32, 365 (1985).
[CrossRef]

A. Boyde, “Stereoscopic Images in Confocal (Tandem Scanning) Microscopy,” Science 230, 1270 (1985).
[CrossRef] [PubMed]

1984 (3)

D. S. Burgi, T. G. Nolan, J. A. Risfelt, N. J. Dovichi, “Photothermal Refraction for Scanning Laser Microscope,” Opt. Eng. 23, 756 (1984).
[CrossRef]

N. J. Dovichi, T. G. Nolan, W. A. Weimer, “Theory for Laser-Induced Photothermal Refraction,” Anal. Chem. 56, 1700 (1984).
[CrossRef]

T. G. Nolan, W. A. Weimer, N. J. Dovichi, “Laser Induced Photothermal Refraction for Small Volume Absorbance Determination,” Anal. Chem. 56, 1704 (1984).
[CrossRef]

1982 (3)

A. Rosencwaig, “Thermal Wave Imaging,” Science, 218, 223 (1982),
[CrossRef] [PubMed]

M. J. Pelletier, H. R. Thorsheim, J. M. Harris, “Thermal Grating Calorimetry,” Anal. Chem. 54, 239 (1982).
[CrossRef]

M. D. Duncan, J. Reintjes, T. J. Manuccia, “Scanning Coherent Anti-Stokes Raman Microscope,” Opt. Lett. 7, 350 (1982).
[CrossRef] [PubMed]

1981 (4)

1980 (1)

J. M. Harris, N. J. Dovichi, “Thermal Lens Calorimetry,” Anal. Chem. 52, 695A (1980).
[CrossRef]

1976 (1)

M. E. Long, R. L. Swoford, A. C. Albrech, “Thermal Lens Technique: A New Method of Absorption Spectroscopy,” Science 191, 183 (1976).
[CrossRef] [PubMed]

1974 (1)

J. R. Whinnery, “Laser Measurement of Optical Absorption in Liquids,” Acc. Chem. Res. 7, 225 (1974).
[CrossRef]

Albrech, A. C.

M. E. Long, R. L. Swoford, A. C. Albrech, “Thermal Lens Technique: A New Method of Absorption Spectroscopy,” Science 191, 183 (1976).
[CrossRef] [PubMed]

Amer, N. M.

Blanchard, G. J.

G. J. Blanchard, M. J. Wirth, “Measurement of Small Absorbances by Picosecond Pump-Probe Spectrometry,” Anal. Chem. 58, 532 (1986).
[CrossRef]

Boccara, A. C.

Boyde, A.

A. Boyde, “Stereoscopic Images in Confocal (Tandem Scanning) Microscopy,” Science 230, 1270 (1985).
[CrossRef] [PubMed]

Burgi, D. S.

D. S. Burgi, W. A. Weimer, T. G. Nolan, N. J. Dovichi, “Crossed-Beam Thermal Lens Microscope,” Am. Inst. Phys. 146, 664 (1986).

D. S. Burgi, T. G. Nolan, J. A. Risfelt, N. J. Dovichi, “Photothermal Refraction for Scanning Laser Microscope,” Opt. Eng. 23, 756 (1984).
[CrossRef]

D. S. Burgi, N. J. Dovichi, “Crossed-Beam Thermal Lens as a Scanning Laser Microscope,” in Proceedings, American Institute of Physics Conference, in press.

Y. F. Cheng, T. K. Lee, D. S. Burgi, N. J. Dovichi, “Two Color Photothermal Microscope,” in preparation.

Cheng, Y. F.

Y. F. Cheng, T. K. Lee, D. S. Burgi, N. J. Dovichi, “Two Color Photothermal Microscope,” in preparation.

Dovichi, N. J.

T. G. Nolan, N. J. Dovichi, “Ultrasensitive Detection of Iron by Crossed-Beam Thermal Lens Measurements,” IEEE Circuits Devices Mag. 2, 54 (1986).
[CrossRef]

D. S. Burgi, W. A. Weimer, T. G. Nolan, N. J. Dovichi, “Crossed-Beam Thermal Lens Microscope,” Am. Inst. Phys. 146, 664 (1986).

W. A. Weimer, N. J. Dovichi, “Simple Model for the Time Dependence of the Periodically Excited Crossed-Beam Thermal Lens,” J. Appl. Phys. 59, 225 (1986).
[CrossRef]

N. J. Dovichi, T. G. Nolan, W. A. Weimer, “Theory for Laser-Induced Photothermal Refraction,” Anal. Chem. 56, 1700 (1984).
[CrossRef]

T. G. Nolan, W. A. Weimer, N. J. Dovichi, “Laser Induced Photothermal Refraction for Small Volume Absorbance Determination,” Anal. Chem. 56, 1704 (1984).
[CrossRef]

D. S. Burgi, T. G. Nolan, J. A. Risfelt, N. J. Dovichi, “Photothermal Refraction for Scanning Laser Microscope,” Opt. Eng. 23, 756 (1984).
[CrossRef]

N. J. Dovichi, J. M. Harris, “Time Resolved Thermal Lens Calorimetry,” Anal. Chem. 53, 106 (1981).
[CrossRef]

J. M. Harris, N. J. Dovichi, “Thermal Lens Calorimetry,” Anal. Chem. 52, 695A (1980).
[CrossRef]

W. A. Weimer, N. J. Dovichi, “Multichannel Crossed-Beam Thermal Lens Measurements for Absolute Absorbance Determination with Pulsed Laser Excitation,” Anal. Chem., submitted.

Y. F. Cheng, T. K. Lee, D. S. Burgi, N. J. Dovichi, “Two Color Photothermal Microscope,” in preparation.

D. S. Burgi, N. J. Dovichi, “Crossed-Beam Thermal Lens as a Scanning Laser Microscope,” in Proceedings, American Institute of Physics Conference, in press.

N. J. Dovichi, “Thermo-Optical Spectrophotometries in Analytical Chemistry,” in CRC Critical Review in Analytical Chemistry (CRC Press, Cleveland, in press).

Duncan, M. D.

Dürig, U.

U. Dürig, D. W. Pohl, F. Rohner, “Near-Field Optical-Scanning Microscopy,” J. Appl. Phys. 59, 3318 (1986).
[CrossRef]

Farrow, R. L.

Fournier, D.

Goldsmith, J. E. M.

Harris, J. M.

M. J. Pelletier, H. R. Thorsheim, J. M. Harris, “Thermal Grating Calorimetry,” Anal. Chem. 54, 239 (1982).
[CrossRef]

N. J. Dovichi, J. M. Harris, “Time Resolved Thermal Lens Calorimetry,” Anal. Chem. 53, 106 (1981).
[CrossRef]

J. M. Harris, N. J. Dovichi, “Thermal Lens Calorimetry,” Anal. Chem. 52, 695A (1980).
[CrossRef]

Jackson, W. B.

Lee, T. K.

Y. F. Cheng, T. K. Lee, D. S. Burgi, N. J. Dovichi, “Two Color Photothermal Microscope,” in preparation.

Long, M. E.

M. E. Long, R. L. Swoford, A. C. Albrech, “Thermal Lens Technique: A New Method of Absorption Spectroscopy,” Science 191, 183 (1976).
[CrossRef] [PubMed]

Manuccia, T. J.

Nolan, T. G.

D. S. Burgi, W. A. Weimer, T. G. Nolan, N. J. Dovichi, “Crossed-Beam Thermal Lens Microscope,” Am. Inst. Phys. 146, 664 (1986).

T. G. Nolan, N. J. Dovichi, “Ultrasensitive Detection of Iron by Crossed-Beam Thermal Lens Measurements,” IEEE Circuits Devices Mag. 2, 54 (1986).
[CrossRef]

T. G. Nolan, W. A. Weimer, N. J. Dovichi, “Laser Induced Photothermal Refraction for Small Volume Absorbance Determination,” Anal. Chem. 56, 1704 (1984).
[CrossRef]

N. J. Dovichi, T. G. Nolan, W. A. Weimer, “Theory for Laser-Induced Photothermal Refraction,” Anal. Chem. 56, 1700 (1984).
[CrossRef]

D. S. Burgi, T. G. Nolan, J. A. Risfelt, N. J. Dovichi, “Photothermal Refraction for Scanning Laser Microscope,” Opt. Eng. 23, 756 (1984).
[CrossRef]

Pelletier, M. J.

M. J. Pelletier, H. R. Thorsheim, J. M. Harris, “Thermal Grating Calorimetry,” Anal. Chem. 54, 239 (1982).
[CrossRef]

Pohl, D. W.

U. Dürig, D. W. Pohl, F. Rohner, “Near-Field Optical-Scanning Microscopy,” J. Appl. Phys. 59, 3318 (1986).
[CrossRef]

Rahn, L. A.

Reintjes, J.

Risfelt, J. A.

D. S. Burgi, T. G. Nolan, J. A. Risfelt, N. J. Dovichi, “Photothermal Refraction for Scanning Laser Microscope,” Opt. Eng. 23, 756 (1984).
[CrossRef]

Rohner, F.

U. Dürig, D. W. Pohl, F. Rohner, “Near-Field Optical-Scanning Microscopy,” J. Appl. Phys. 59, 3318 (1986).
[CrossRef]

Rosencwaig, A.

A. Rosencwaig, “Thermal Wave Imaging,” Science, 218, 223 (1982),
[CrossRef] [PubMed]

Swoford, R. L.

M. E. Long, R. L. Swoford, A. C. Albrech, “Thermal Lens Technique: A New Method of Absorption Spectroscopy,” Science 191, 183 (1976).
[CrossRef] [PubMed]

Thorsheim, H. R.

M. J. Pelletier, H. R. Thorsheim, J. M. Harris, “Thermal Grating Calorimetry,” Anal. Chem. 54, 239 (1982).
[CrossRef]

Weimer, W. A.

D. S. Burgi, W. A. Weimer, T. G. Nolan, N. J. Dovichi, “Crossed-Beam Thermal Lens Microscope,” Am. Inst. Phys. 146, 664 (1986).

W. A. Weimer, N. J. Dovichi, “Simple Model for the Time Dependence of the Periodically Excited Crossed-Beam Thermal Lens,” J. Appl. Phys. 59, 225 (1986).
[CrossRef]

T. G. Nolan, W. A. Weimer, N. J. Dovichi, “Laser Induced Photothermal Refraction for Small Volume Absorbance Determination,” Anal. Chem. 56, 1704 (1984).
[CrossRef]

N. J. Dovichi, T. G. Nolan, W. A. Weimer, “Theory for Laser-Induced Photothermal Refraction,” Anal. Chem. 56, 1700 (1984).
[CrossRef]

W. A. Weimer, N. J. Dovichi, “Multichannel Crossed-Beam Thermal Lens Measurements for Absolute Absorbance Determination with Pulsed Laser Excitation,” Anal. Chem., submitted.

Whinnery, J. R.

J. R. Whinnery, “Laser Measurement of Optical Absorption in Liquids,” Acc. Chem. Res. 7, 225 (1974).
[CrossRef]

Williams, C. C.

C. C. Williams, “High-Resolution Photothermal Laser Probe,” IEEE Trans. Sonics Ultrason. SU-32, 365 (1985).
[CrossRef]

Wirth, M. J.

G. J. Blanchard, M. J. Wirth, “Measurement of Small Absorbances by Picosecond Pump-Probe Spectrometry,” Anal. Chem. 58, 532 (1986).
[CrossRef]

Acc. Chem. Res. (1)

J. R. Whinnery, “Laser Measurement of Optical Absorption in Liquids,” Acc. Chem. Res. 7, 225 (1974).
[CrossRef]

Am. Inst. Phys. (1)

D. S. Burgi, W. A. Weimer, T. G. Nolan, N. J. Dovichi, “Crossed-Beam Thermal Lens Microscope,” Am. Inst. Phys. 146, 664 (1986).

Anal. Chem. (6)

G. J. Blanchard, M. J. Wirth, “Measurement of Small Absorbances by Picosecond Pump-Probe Spectrometry,” Anal. Chem. 58, 532 (1986).
[CrossRef]

M. J. Pelletier, H. R. Thorsheim, J. M. Harris, “Thermal Grating Calorimetry,” Anal. Chem. 54, 239 (1982).
[CrossRef]

J. M. Harris, N. J. Dovichi, “Thermal Lens Calorimetry,” Anal. Chem. 52, 695A (1980).
[CrossRef]

N. J. Dovichi, J. M. Harris, “Time Resolved Thermal Lens Calorimetry,” Anal. Chem. 53, 106 (1981).
[CrossRef]

N. J. Dovichi, T. G. Nolan, W. A. Weimer, “Theory for Laser-Induced Photothermal Refraction,” Anal. Chem. 56, 1700 (1984).
[CrossRef]

T. G. Nolan, W. A. Weimer, N. J. Dovichi, “Laser Induced Photothermal Refraction for Small Volume Absorbance Determination,” Anal. Chem. 56, 1704 (1984).
[CrossRef]

Appl. Opt. (1)

IEEE Circuits Devices Mag. (1)

T. G. Nolan, N. J. Dovichi, “Ultrasensitive Detection of Iron by Crossed-Beam Thermal Lens Measurements,” IEEE Circuits Devices Mag. 2, 54 (1986).
[CrossRef]

IEEE Trans. Sonics Ultrason. (1)

C. C. Williams, “High-Resolution Photothermal Laser Probe,” IEEE Trans. Sonics Ultrason. SU-32, 365 (1985).
[CrossRef]

J. Appl. Phys. (2)

U. Dürig, D. W. Pohl, F. Rohner, “Near-Field Optical-Scanning Microscopy,” J. Appl. Phys. 59, 3318 (1986).
[CrossRef]

W. A. Weimer, N. J. Dovichi, “Simple Model for the Time Dependence of the Periodically Excited Crossed-Beam Thermal Lens,” J. Appl. Phys. 59, 225 (1986).
[CrossRef]

Opt. Eng. (1)

D. S. Burgi, T. G. Nolan, J. A. Risfelt, N. J. Dovichi, “Photothermal Refraction for Scanning Laser Microscope,” Opt. Eng. 23, 756 (1984).
[CrossRef]

Opt. Lett. (3)

Science (3)

A. Boyde, “Stereoscopic Images in Confocal (Tandem Scanning) Microscopy,” Science 230, 1270 (1985).
[CrossRef] [PubMed]

A. Rosencwaig, “Thermal Wave Imaging,” Science, 218, 223 (1982),
[CrossRef] [PubMed]

M. E. Long, R. L. Swoford, A. C. Albrech, “Thermal Lens Technique: A New Method of Absorption Spectroscopy,” Science 191, 183 (1976).
[CrossRef] [PubMed]

Other (4)

D. S. Burgi, N. J. Dovichi, “Crossed-Beam Thermal Lens as a Scanning Laser Microscope,” in Proceedings, American Institute of Physics Conference, in press.

N. J. Dovichi, “Thermo-Optical Spectrophotometries in Analytical Chemistry,” in CRC Critical Review in Analytical Chemistry (CRC Press, Cleveland, in press).

Y. F. Cheng, T. K. Lee, D. S. Burgi, N. J. Dovichi, “Two Color Photothermal Microscope,” in preparation.

W. A. Weimer, N. J. Dovichi, “Multichannel Crossed-Beam Thermal Lens Measurements for Absolute Absorbance Determination with Pulsed Laser Excitation,” Anal. Chem., submitted.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental diagram. M, mirrors; PUMP, unpolarized He–Cd laser; CHOPPER, mechanical chopper operating at ∼1.5 kHz; LENS, microscope objective; PROBE, polarized He–Ne laser. The DICHROIC FILTER transmits red light and reflects blue light, the SAMPLE is mounted on a three-axes translation stage and moved with computer controlled ACTUATORS, the colored glass FILTER transmits the probe beam and absorbs the pump beam, the PINHOLE isolates the probe beam center, the LENS focuses the transmitted light onto a DETECTOR constructed from a 1-cm2 silicon photocell. The LOCK-IN AMPlifier demodulates the signal and sends the digitized data to a laboratory computer. The COMPUTER plots both the phase and ratio of the amplitude of the lock-in signal to the dc probe intensity with a digital PLOTTER.

Fig. 2
Fig. 2

Image of a one-year old stem of Tilia americana taken with 1-μm spacing between pixels: (a) amplitude; (b) phase.

Fig. 3
Fig. 3

Image of tuberculosis control: (a) 20-μm spacing between pixels; (b) 1-μm spacing; (c) 100-nm spacing.

Metrics