Abstract

A computer-controlled laser-beam writing system has been developed for optical integrated circuits (optical ICs). This system allows us to make waveguide patterns 3–4 μm wide, such as directional couplers, and Y-junction, crossed, and S-shaped waveguides, automatically within an edge roughness of 0.2 μm on a photoresist-coated LiNbO3 substrate. By combining these waveguide patterns, optical ICs can be delineated over more than 50-mm length. This paper presents the system description and the laser-beam writing characteristics of key waveguide patterns. The integrated-optic fiber laser Doppler velocimeter is also demonstrated as an example of large-area optical ICs.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Becker, B. L. Sopori, W. S. C. Chang, “Focused Laser Lithographic System,” Appl. Opt. 17, 1069 (1978).
    [CrossRef] [PubMed]
  2. K. E. Wilson, C. T. Mueller, E. L. Garmire, “Laser Writing of Masks for Integrated Optical Circuits,” IEEE Trans. Components, Hybrids, Manuf. Technol. CHMT-5, 202 (1982).
    [CrossRef]
  3. I. Ben-David, S. Berlowitz, M. Itzkowitz, S. Ruschin, N. Croitoru, “Laser Beam Photolithographic System for Integrated Optics Applications,” in Technical Digest, Third European Conference on Integrated Optics, Berlin (May 1985), p. 34.
  4. R. C. Alferness, R. V. Schmidt, E. H. Turner, “Characteristics of Ti-Diffused Lithium Niobate Optical Directional Couplers,” Appl. Opt. 18, 4012 (1979).
    [CrossRef] [PubMed]
  5. O. Mikami, J. Noda, “Coupling Length Adjustment for an Optical Directional Coupler by Loading a Metal Film,” Appl. Phys. Lett. 33, 856 (1978).
    [CrossRef]
  6. W. J. Minfold, S. Korotky, R. C. Alferness, “Low-Loss Ti:LiNbO3 Waveguide Bends at λ = 1.3 μm,” IEEE J. Quantum Electron. QE-18, 1802 (1982).
    [CrossRef]
  7. L. M. Johnson, F. J. Leonberger, “Low-Loss LiNbO3 Waveguide Bends with Coherent Coupling,” Opt. Lett. 8, 111 (1983).
    [CrossRef] [PubMed]
  8. H. Toda, M. Haruna, H. Nishihara, “Integrated-optic fiber laser Doppler velocimeter: Proposal and first demonstration,” in Technical Digest, Fourth International Conference on Optical Fiber Sensors, Tokyo (Oct. 1986), paper 4.7.
  9. M. Haruna, H. Nishihara, “Laser-Beam Lithography for Large-Area Optical Integrated Circuits,” in Conference on Optical Fiber Communication/Sixth International Conference on Integrated Optics and Optical Fiber Communication Technical Digest Series 1987, Vol. 3 (Optical Society of America, Washington, DC, 1987), paper TUH6.

1983 (1)

1982 (2)

K. E. Wilson, C. T. Mueller, E. L. Garmire, “Laser Writing of Masks for Integrated Optical Circuits,” IEEE Trans. Components, Hybrids, Manuf. Technol. CHMT-5, 202 (1982).
[CrossRef]

W. J. Minfold, S. Korotky, R. C. Alferness, “Low-Loss Ti:LiNbO3 Waveguide Bends at λ = 1.3 μm,” IEEE J. Quantum Electron. QE-18, 1802 (1982).
[CrossRef]

1979 (1)

1978 (2)

O. Mikami, J. Noda, “Coupling Length Adjustment for an Optical Directional Coupler by Loading a Metal Film,” Appl. Phys. Lett. 33, 856 (1978).
[CrossRef]

R. A. Becker, B. L. Sopori, W. S. C. Chang, “Focused Laser Lithographic System,” Appl. Opt. 17, 1069 (1978).
[CrossRef] [PubMed]

Alferness, R. C.

W. J. Minfold, S. Korotky, R. C. Alferness, “Low-Loss Ti:LiNbO3 Waveguide Bends at λ = 1.3 μm,” IEEE J. Quantum Electron. QE-18, 1802 (1982).
[CrossRef]

R. C. Alferness, R. V. Schmidt, E. H. Turner, “Characteristics of Ti-Diffused Lithium Niobate Optical Directional Couplers,” Appl. Opt. 18, 4012 (1979).
[CrossRef] [PubMed]

Becker, R. A.

Ben-David, I.

I. Ben-David, S. Berlowitz, M. Itzkowitz, S. Ruschin, N. Croitoru, “Laser Beam Photolithographic System for Integrated Optics Applications,” in Technical Digest, Third European Conference on Integrated Optics, Berlin (May 1985), p. 34.

Berlowitz, S.

I. Ben-David, S. Berlowitz, M. Itzkowitz, S. Ruschin, N. Croitoru, “Laser Beam Photolithographic System for Integrated Optics Applications,” in Technical Digest, Third European Conference on Integrated Optics, Berlin (May 1985), p. 34.

Chang, W. S. C.

Croitoru, N.

I. Ben-David, S. Berlowitz, M. Itzkowitz, S. Ruschin, N. Croitoru, “Laser Beam Photolithographic System for Integrated Optics Applications,” in Technical Digest, Third European Conference on Integrated Optics, Berlin (May 1985), p. 34.

Garmire, E. L.

K. E. Wilson, C. T. Mueller, E. L. Garmire, “Laser Writing of Masks for Integrated Optical Circuits,” IEEE Trans. Components, Hybrids, Manuf. Technol. CHMT-5, 202 (1982).
[CrossRef]

Haruna, M.

M. Haruna, H. Nishihara, “Laser-Beam Lithography for Large-Area Optical Integrated Circuits,” in Conference on Optical Fiber Communication/Sixth International Conference on Integrated Optics and Optical Fiber Communication Technical Digest Series 1987, Vol. 3 (Optical Society of America, Washington, DC, 1987), paper TUH6.

H. Toda, M. Haruna, H. Nishihara, “Integrated-optic fiber laser Doppler velocimeter: Proposal and first demonstration,” in Technical Digest, Fourth International Conference on Optical Fiber Sensors, Tokyo (Oct. 1986), paper 4.7.

Itzkowitz, M.

I. Ben-David, S. Berlowitz, M. Itzkowitz, S. Ruschin, N. Croitoru, “Laser Beam Photolithographic System for Integrated Optics Applications,” in Technical Digest, Third European Conference on Integrated Optics, Berlin (May 1985), p. 34.

Johnson, L. M.

Korotky, S.

W. J. Minfold, S. Korotky, R. C. Alferness, “Low-Loss Ti:LiNbO3 Waveguide Bends at λ = 1.3 μm,” IEEE J. Quantum Electron. QE-18, 1802 (1982).
[CrossRef]

Leonberger, F. J.

Mikami, O.

O. Mikami, J. Noda, “Coupling Length Adjustment for an Optical Directional Coupler by Loading a Metal Film,” Appl. Phys. Lett. 33, 856 (1978).
[CrossRef]

Minfold, W. J.

W. J. Minfold, S. Korotky, R. C. Alferness, “Low-Loss Ti:LiNbO3 Waveguide Bends at λ = 1.3 μm,” IEEE J. Quantum Electron. QE-18, 1802 (1982).
[CrossRef]

Mueller, C. T.

K. E. Wilson, C. T. Mueller, E. L. Garmire, “Laser Writing of Masks for Integrated Optical Circuits,” IEEE Trans. Components, Hybrids, Manuf. Technol. CHMT-5, 202 (1982).
[CrossRef]

Nishihara, H.

M. Haruna, H. Nishihara, “Laser-Beam Lithography for Large-Area Optical Integrated Circuits,” in Conference on Optical Fiber Communication/Sixth International Conference on Integrated Optics and Optical Fiber Communication Technical Digest Series 1987, Vol. 3 (Optical Society of America, Washington, DC, 1987), paper TUH6.

H. Toda, M. Haruna, H. Nishihara, “Integrated-optic fiber laser Doppler velocimeter: Proposal and first demonstration,” in Technical Digest, Fourth International Conference on Optical Fiber Sensors, Tokyo (Oct. 1986), paper 4.7.

Noda, J.

O. Mikami, J. Noda, “Coupling Length Adjustment for an Optical Directional Coupler by Loading a Metal Film,” Appl. Phys. Lett. 33, 856 (1978).
[CrossRef]

Ruschin, S.

I. Ben-David, S. Berlowitz, M. Itzkowitz, S. Ruschin, N. Croitoru, “Laser Beam Photolithographic System for Integrated Optics Applications,” in Technical Digest, Third European Conference on Integrated Optics, Berlin (May 1985), p. 34.

Schmidt, R. V.

Sopori, B. L.

Toda, H.

H. Toda, M. Haruna, H. Nishihara, “Integrated-optic fiber laser Doppler velocimeter: Proposal and first demonstration,” in Technical Digest, Fourth International Conference on Optical Fiber Sensors, Tokyo (Oct. 1986), paper 4.7.

Turner, E. H.

Wilson, K. E.

K. E. Wilson, C. T. Mueller, E. L. Garmire, “Laser Writing of Masks for Integrated Optical Circuits,” IEEE Trans. Components, Hybrids, Manuf. Technol. CHMT-5, 202 (1982).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

O. Mikami, J. Noda, “Coupling Length Adjustment for an Optical Directional Coupler by Loading a Metal Film,” Appl. Phys. Lett. 33, 856 (1978).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. J. Minfold, S. Korotky, R. C. Alferness, “Low-Loss Ti:LiNbO3 Waveguide Bends at λ = 1.3 μm,” IEEE J. Quantum Electron. QE-18, 1802 (1982).
[CrossRef]

IEEE Trans. Components, Hybrids, Manuf. Technol. (1)

K. E. Wilson, C. T. Mueller, E. L. Garmire, “Laser Writing of Masks for Integrated Optical Circuits,” IEEE Trans. Components, Hybrids, Manuf. Technol. CHMT-5, 202 (1982).
[CrossRef]

Opt. Lett. (1)

Other (3)

I. Ben-David, S. Berlowitz, M. Itzkowitz, S. Ruschin, N. Croitoru, “Laser Beam Photolithographic System for Integrated Optics Applications,” in Technical Digest, Third European Conference on Integrated Optics, Berlin (May 1985), p. 34.

H. Toda, M. Haruna, H. Nishihara, “Integrated-optic fiber laser Doppler velocimeter: Proposal and first demonstration,” in Technical Digest, Fourth International Conference on Optical Fiber Sensors, Tokyo (Oct. 1986), paper 4.7.

M. Haruna, H. Nishihara, “Laser-Beam Lithography for Large-Area Optical Integrated Circuits,” in Conference on Optical Fiber Communication/Sixth International Conference on Integrated Optics and Optical Fiber Communication Technical Digest Series 1987, Vol. 3 (Optical Society of America, Washington, DC, 1987), paper TUH6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

System configuration for laser-beam waveguide writing.

Fig. 2
Fig. 2

SEM photograph showing line patterns in photoresist, where the 3.2-μm wide lines were written by focusing the laser beam with a ×6 objective.

Fig. 3
Fig. 3

Linewidth vs irradiated laser power when No. 1400-27 photoresist 1 μm thick is spin-coated on a microscope slide.

Fig. 4
Fig. 4

Submicron lines of Ti-film stripes on a glass substrate, written in 0.1-μm thick photoresist with a ×60 objective.

Fig. 5
Fig. 5

Patterning of twenty directional waveguide couplers on a Z-cut LiNbO3 substrate. Each coupler differs in the interaction length L from the others by ΔL = 0.24 mm to evaluate the coupling length LC.

Fig. 6
Fig. 6

sin−1(η1/2) vs the interaction length L for twenty directional couplers formed on a common substrate, where η is the power transfer ratio. The coupling length LC is determined so that sin−1(η1/2) = π/2.

Fig. 7
Fig. 7

Evaluation of the coupling length by the method of direct metal cladding on one waveguide of the coupler, where the waveguide spacing is 4.5 μm.

Fig. 8
Fig. 8

Laser-beam written key waveguides: (a) Y-junction, (b) crossed, and (c) S-shaped.

Fig. 9
Fig. 9

Integrated-optic fiber laser Doppler velocimeter and microscope photographs of key patterns in Ti-diffused waveguides.

Tables (1)

Tables Icon

Table I Performance and Specification of the Laser-Beam Writing System Developed

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η = P 2 / ( P 1 + P 2 ) = sin 2 ( ν L + Φ ) ,
y = H x / L ( H / 2 π ) sin ( 2 π x / L ) ,

Metrics