Abstract

The use of computer generated holographic elements for implementation of free-space optical interconnection of very large scale integrated circuits is presented. The design of the holographic optical elements is based on laser source divergence, source to hologram spacing, signal fanout, and resolution of the hologram recorder. The results of a computer simulation of diffraction from the hologram are compared with the analytically predicted results, particularly to confirm the effect of spatial sampling on the performance of an on-axis interferogram hologram. Measurements taken using transmission absorption and transmission phase holograms in photographic emulsion, as well as reflective surface relief holograms on silicon, are compared to predicted results. Performance benefits expected from extension of the design process to holograms fabricated using electron-beam lithography are discussed.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
    [CrossRef]
  2. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical Imaging Applied to Microelectronic Chip-to-Chip Interconnections,” Appl. Opt. 24, 2851 (1985).
    [CrossRef] [PubMed]
  3. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Volume Reflection Holograms with Multiple Gratings: An Experimental and Theoretical Evaluation,” Appl. Opt. 25, 4362 (1986).
    [CrossRef] [PubMed]
  4. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical Interconnects with Reflection Holographic Optical Elements,” in Technical Digest, Topical Meeting on Holography (Optical Society of America, Washington, DC, 1986), pp. 120–123.
  5. L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The Kinoform: A New Wavefront Reconstruction Device,” IBM J. Res. Dev. 150 (Mar.1969).
  6. S. M. Arnold, “Electron Beam Fabrication of Computer-Generated Holograms,” Opt. Eng. 24, 803 (1985).
    [CrossRef]
  7. J. R. Leger, S. H. Lee, “Coherent Optical Implementation of Generalized Two-Dimensional Transforms,” Opt. Eng. 18, 518 (1979).
    [CrossRef]
  8. N. C. Gallagher, J. C. Augus, F. E. Caffield, R. V. Edwards, J. A. Mann, “Binary Phase Digital Reflection Holograms: Fabrication and Potential Applications,” Appl. Opt. 16, 413 (1977).
    [CrossRef] [PubMed]

1986 (1)

1985 (2)

1984 (1)

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

1979 (1)

J. R. Leger, S. H. Lee, “Coherent Optical Implementation of Generalized Two-Dimensional Transforms,” Opt. Eng. 18, 518 (1979).
[CrossRef]

1977 (1)

1969 (1)

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The Kinoform: A New Wavefront Reconstruction Device,” IBM J. Res. Dev. 150 (Mar.1969).

Arnold, S. M.

S. M. Arnold, “Electron Beam Fabrication of Computer-Generated Holograms,” Opt. Eng. 24, 803 (1985).
[CrossRef]

Athale, R. A.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Augus, J. C.

Caffield, F. E.

Edwards, R. V.

Gallagher, N. C.

Goodman, J. W.

R. K. Kostuk, J. W. Goodman, L. Hesselink, “Volume Reflection Holograms with Multiple Gratings: An Experimental and Theoretical Evaluation,” Appl. Opt. 25, 4362 (1986).
[CrossRef] [PubMed]

R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical Imaging Applied to Microelectronic Chip-to-Chip Interconnections,” Appl. Opt. 24, 2851 (1985).
[CrossRef] [PubMed]

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical Interconnects with Reflection Holographic Optical Elements,” in Technical Digest, Topical Meeting on Holography (Optical Society of America, Washington, DC, 1986), pp. 120–123.

Hesselink, L.

Hirsch, P. M.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The Kinoform: A New Wavefront Reconstruction Device,” IBM J. Res. Dev. 150 (Mar.1969).

Jordan, J. A.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The Kinoform: A New Wavefront Reconstruction Device,” IBM J. Res. Dev. 150 (Mar.1969).

Kostuk, R. K.

Kung, S. Y.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Lee, S. H.

J. R. Leger, S. H. Lee, “Coherent Optical Implementation of Generalized Two-Dimensional Transforms,” Opt. Eng. 18, 518 (1979).
[CrossRef]

Leger, J. R.

J. R. Leger, S. H. Lee, “Coherent Optical Implementation of Generalized Two-Dimensional Transforms,” Opt. Eng. 18, 518 (1979).
[CrossRef]

Leonberger, F. I.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Lesem, L. B.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The Kinoform: A New Wavefront Reconstruction Device,” IBM J. Res. Dev. 150 (Mar.1969).

Mann, J. A.

Appl. Opt. (3)

IBM J. Res. Dev. (1)

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The Kinoform: A New Wavefront Reconstruction Device,” IBM J. Res. Dev. 150 (Mar.1969).

Opt. Eng. (2)

S. M. Arnold, “Electron Beam Fabrication of Computer-Generated Holograms,” Opt. Eng. 24, 803 (1985).
[CrossRef]

J. R. Leger, S. H. Lee, “Coherent Optical Implementation of Generalized Two-Dimensional Transforms,” Opt. Eng. 18, 518 (1979).
[CrossRef]

Proc. IEEE (1)

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Other (1)

R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical Interconnects with Reflection Holographic Optical Elements,” in Technical Digest, Topical Meeting on Holography (Optical Society of America, Washington, DC, 1986), pp. 120–123.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical interconnection system configuration.

Fig. 2
Fig. 2

HOE pattern used to connect one source to five detectors.

Fig. 3
Fig. 3

Plot of the diffraction efficiency reduction factor due to sampling vs interpolation factor Mx for Mx = My.

Fig. 4
Fig. 4

Reconstruction system used for evaluation of reflective HOEs.

Fig. 5
Fig. 5

High-contrast enlargement of a surface relief reflection HOE on a silicon wafer coated with aluminum.

Fig. 6
Fig. 6

Light intensity at the detector plane produced by a HOE designed to connect one source to five detectors. The output spots form a square 3 mm on a side.

Fig. 7
Fig. 7

Oscilloscope trace of a video scan through the center of one diffracted spot.

Tables (6)

Tables Icon

Table I Analytic Results Predicted for Three Types of HOE that can be Produced Using a Pattern Generated by the Laser Scanner System

Tables Icon

Table II Measurements of the Reconstructed Spots Produced by the Hologram of Fig. 5 after Bleaching; Spot Dimensions are Full Width, Half Power

Tables Icon

Table III Measurements of the Five Signal Spots Produced by an Aluminized Surface Relief HOE on Silicon

Tables Icon

Table IV Measurements of the Spot Dimensions Produced with Different Angles of Incidence for the Reconstructing Beam

Tables Icon

Table V Comparison of Computer Simulation Results with Experimental Results

Tables Icon

Table VI Comparison of Analytically Predicted Performance of HOEs Produced Using the Laser Scanner System and HOEs Produced Using Electron-Beam Lithography

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( x , y ) = π λ F ( x 2 + y 2 )
f max = 1 2 π ( ϕ x ) max = ( x max λ F )
f s 1 λ F # x , f s 1 λ F # y ,
f s 1 x min , f s 1 y min ,
x min λ F # x , y min λ F # y .
w 8 F # λ 1 π
x min π 8 w .
r s = X ( M x ) X ( M y ) ,
M x = λ F # x x min , M y = λ F # y y min ,
F # x = 2 x min / λ , F # y = 2 y min / λ
η = P s P inc ,
η t = P 0 P inc ,
r s = P s P 0 ,
η = r s η t .
H ( x , y ) = { 1 if cos π λ f ( x 2 + y 2 ) 0 , 0 if cos π λ f ( x 2 + y 2 ) < 0
= rect ( x D x , y D y ) m = sin ( m π / 2 ) m π exp [ j ( m π / λ F ) ( x 2 + y 2 ) ] ,
rect ( a , b ) = { 1 if | a | ½ and | b | ½ 0 otherwise ,
H 1 ( x , y ) = rect ( x D x , y D y ) 1 π exp [ j ( π / λ F ) ( x 2 + y 2 ) ] .
G ( x , y ) = 1 δ x 1 δ y [ H ( x , y ) comb ( x δ x , y δ y ) ] * rect ( x δ x , y δ y ) ,
comb ( a , b ) = n = δ ( a n ) m = δ ( b m ) .
G 1 ( x , y ) = 1 δ x 1 δ y [ H 1 ( x , y ) comb ( x δ x , y δ y ) ] * rect ( x δ x , y δ y ) .
g ( u , υ ) = δ x δ y sinc ( δ x u ) sinc ( δ y υ ) [ h ( u , υ ) * comb ( δ x u , δ y υ ) ]
= sinc ( δ x u ) sinc ( δ y υ ) m n h ( u n δ x , υ n δ y ) ,
g 0 ( u , υ ) = sinc ( δ x u ) sinc ( δ y υ ) h ( u , υ ) .
r s = u υ sinc 2 ( δ x u ) sinc 2 ( δ y υ ) | h ( u , υ ) | 2 dud υ u υ | h ( u , υ ) | 2 dud υ .
| h ( u , υ ) | 2 { 1 | u | < Δ u 2 and | υ | < Δ υ 2 , 0 otherwise ,
r s 1 Δ u Δ u / 2 + Δ u / 2 sinc 2 ( δ x u ) d u 1 Δ υ Δ υ / 2 + Δ υ / 2 sinc 2 ( δ y υ ) d υ .
X ( a ) = 1 / 2 + 1 / 2 sinc 2 ( w a ) d w
M x = 1 Δ u δ x , M y = 1 Δ υ δ y .
r s = X ( M x ) X ( M y ) .
Δ u = 1 λ F # x , Δ υ = 1 λ F # y .
M x = λ F # x x min , M y = λ F # y y min .

Metrics