Abstract

A mobile optical remote sensing system for environmental monitoring is described. The system, housed in a full-size truck with a laboratory floor surface of 6.0 × 2.3 m2, is mainly intended for differential absorption lidar (DIAL) applications but can also be used for laser-induced fluorescence monitoring and for absorption measurements using classical light sources. The system has a 40-cm diam receiving telescope and a fully steerable flat mirror in a transmitting/receiving dome. A Nd:YAG-pumped dye laser with auxiliary nonlinear frequency conversion is the preferred transmitter in DIAL measurements. Measurement examples for atmospheric SO2 and NO2 monitoring with automatic concentration map drawings are given and further uses are discussed.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Killinger, A. Mooradian, Eds., Optical and Laser Remote Sensing (Springer-Verlag, Heidelberg, 1983).
  2. R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984).
  3. U. Platt, D. Perner, “Measurements of Atmospheric Trace Gases by Long Path Differential UV/Visible Absorption Spectroscopy,” in Ref. 1.
  4. H. Edner, A. Sunesson, S. Svanberg, L. Unéus, S. Wallin, “Differential Optical Absorption Spectroscopy System Used for Atmospheric Mercury Monitoring,” Appl. Opt. 25, 403 (1986).
    [CrossRef] [PubMed]
  5. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, “Lidar System Applied in Atmospheric Pollution Monitoring,” Appl. Opt. 18, 2998 (1979).
    [CrossRef] [PubMed]
  6. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, “Mobile Lidar System for Environmental Probing,” Appl. Opt. 20, 4181 (1981).
    [CrossRef] [PubMed]
  7. K. Fredriksson, S. Svanberg, “Pollution Monitoring Using Nd:YAG Based Lidar Systems,” in Ref. 1.
  8. A.-L. Egebäck, K. A. Fredriksson, H. M. Hertz, “DIAL Techniques for the Control of Sulfur Dioxide Emissions,” Appl. Opt. 23, 722 (1984).
    [CrossRef] [PubMed]
  9. K. A. Fredriksson, H. M. Hertz, “Evaluation of the DIAL Technique for Studies on NO2 Using a Mobile Lidar System,” Appl. Opt. 23, 1403 (1984).
    [CrossRef] [PubMed]
  10. K. Fredriksson, “Conclusions from the Evaluation and Testing of the Swedish Mobile Lidar System,” Report SNV PM1639 (1982).
  11. H. Edner, S. Svanberg, L. Unéus, W. Wendt, “Gas-Correlation Lidar,” Opt. Lett. 9, 493 (1984).
    [CrossRef] [PubMed]
  12. P. S. Andersson, S. Montán, S. Svanberg, “Remote Sample Characterization Based on Fluorescence Monitoring,” Appl. Phys. B43,to be published 1987).
  13. M. Aldén, S. Wallin, “CARS Experiments in a Full-Scale (10 × 10 m) Industrial Coal Furnace,” Appl. Opt. 24, 3434 (1985).
    [CrossRef] [PubMed]
  14. J. Kamme, “Differential Optical Absorption Spectroscopy (DOAS) and Differential Absorption Lidar (DIAL) Applied to Atmospheric Mercury Monitoring,” Diploma Paper, Lund Reports on Atomic Physics, LRAP-65 (1986).
  15. R. J. Allen, W. E. Evans, “Laser Radar (LIDAR) for Mapping Aerosol Structure,” Rev. Sci. Instrum. 43, 1422 (1972).
    [CrossRef]
  16. D. J. Brassington, “Sulfur Dioxide Absorption Cross-Section Measurements from 290 nm to 317 nm,” Appl. Opt. 20, 3774 (1981).
    [CrossRef] [PubMed]
  17. B. Galle, A. Sunesson, W. Wendt, “NO2-Mapping Using Laser-Radar Techniques,” submitted to Atmospheric Environment.
  18. Q. Bristow, I. R. Jonasson, “Vapour Sensing for Mineral Exploration,” Can. Min. J. 93, 39 (1972).
  19. V. Z. Fursov, N. B. Voltson, I. Khvalovsky, “Results of a Study of Mercury Vapour in the Tashkent Earthquake Zone,” Dokl. Akad. Nauk SSSR 179, 208 (1968).
  20. J. C. Varekamp, P. R. Buseck, “Hg Anomalies in Soils: a Geochemical Exploration Method for Geothermal Areas,” Geothermics 12, 29 (1983).
    [CrossRef]
  21. F. E. Hoge, R. N. Swift, “Airborne Simultaneous Spectroscopic Detection of Laser-Induced Water Raman Backscatter and Fluorescence from Chlorophyll a and Other Naturally Occurring Pigments,” Appl. Opt. 20, 3197 (1981).
    [CrossRef] [PubMed]
  22. S. Montán, S. Svanberg, “A System for Industrial Surface Monitoring Utilizing Laser-Induced Fluorescence,” Appl. Phys. B 38, 241 (1985).
    [CrossRef]

1986 (2)

J. Kamme, “Differential Optical Absorption Spectroscopy (DOAS) and Differential Absorption Lidar (DIAL) Applied to Atmospheric Mercury Monitoring,” Diploma Paper, Lund Reports on Atomic Physics, LRAP-65 (1986).

H. Edner, A. Sunesson, S. Svanberg, L. Unéus, S. Wallin, “Differential Optical Absorption Spectroscopy System Used for Atmospheric Mercury Monitoring,” Appl. Opt. 25, 403 (1986).
[CrossRef] [PubMed]

1985 (2)

M. Aldén, S. Wallin, “CARS Experiments in a Full-Scale (10 × 10 m) Industrial Coal Furnace,” Appl. Opt. 24, 3434 (1985).
[CrossRef] [PubMed]

S. Montán, S. Svanberg, “A System for Industrial Surface Monitoring Utilizing Laser-Induced Fluorescence,” Appl. Phys. B 38, 241 (1985).
[CrossRef]

1984 (3)

1983 (1)

J. C. Varekamp, P. R. Buseck, “Hg Anomalies in Soils: a Geochemical Exploration Method for Geothermal Areas,” Geothermics 12, 29 (1983).
[CrossRef]

1982 (1)

K. Fredriksson, “Conclusions from the Evaluation and Testing of the Swedish Mobile Lidar System,” Report SNV PM1639 (1982).

1981 (3)

1979 (1)

1972 (2)

R. J. Allen, W. E. Evans, “Laser Radar (LIDAR) for Mapping Aerosol Structure,” Rev. Sci. Instrum. 43, 1422 (1972).
[CrossRef]

Q. Bristow, I. R. Jonasson, “Vapour Sensing for Mineral Exploration,” Can. Min. J. 93, 39 (1972).

1968 (1)

V. Z. Fursov, N. B. Voltson, I. Khvalovsky, “Results of a Study of Mercury Vapour in the Tashkent Earthquake Zone,” Dokl. Akad. Nauk SSSR 179, 208 (1968).

Aldén, M.

Allen, R. J.

R. J. Allen, W. E. Evans, “Laser Radar (LIDAR) for Mapping Aerosol Structure,” Rev. Sci. Instrum. 43, 1422 (1972).
[CrossRef]

Andersson, P. S.

P. S. Andersson, S. Montán, S. Svanberg, “Remote Sample Characterization Based on Fluorescence Monitoring,” Appl. Phys. B43,to be published 1987).

Brassington, D. J.

Bristow, Q.

Q. Bristow, I. R. Jonasson, “Vapour Sensing for Mineral Exploration,” Can. Min. J. 93, 39 (1972).

Buseck, P. R.

J. C. Varekamp, P. R. Buseck, “Hg Anomalies in Soils: a Geochemical Exploration Method for Geothermal Areas,” Geothermics 12, 29 (1983).
[CrossRef]

Edner, H.

Egebäck, A.-L.

Evans, W. E.

R. J. Allen, W. E. Evans, “Laser Radar (LIDAR) for Mapping Aerosol Structure,” Rev. Sci. Instrum. 43, 1422 (1972).
[CrossRef]

Fredriksson, K.

K. Fredriksson, “Conclusions from the Evaluation and Testing of the Swedish Mobile Lidar System,” Report SNV PM1639 (1982).

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, “Mobile Lidar System for Environmental Probing,” Appl. Opt. 20, 4181 (1981).
[CrossRef] [PubMed]

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, “Lidar System Applied in Atmospheric Pollution Monitoring,” Appl. Opt. 18, 2998 (1979).
[CrossRef] [PubMed]

K. Fredriksson, S. Svanberg, “Pollution Monitoring Using Nd:YAG Based Lidar Systems,” in Ref. 1.

Fredriksson, K. A.

Fursov, V. Z.

V. Z. Fursov, N. B. Voltson, I. Khvalovsky, “Results of a Study of Mercury Vapour in the Tashkent Earthquake Zone,” Dokl. Akad. Nauk SSSR 179, 208 (1968).

Galle, B.

Hertz, H. M.

Hoge, F. E.

Jonasson, I. R.

Q. Bristow, I. R. Jonasson, “Vapour Sensing for Mineral Exploration,” Can. Min. J. 93, 39 (1972).

Kamme, J.

J. Kamme, “Differential Optical Absorption Spectroscopy (DOAS) and Differential Absorption Lidar (DIAL) Applied to Atmospheric Mercury Monitoring,” Diploma Paper, Lund Reports on Atomic Physics, LRAP-65 (1986).

Khvalovsky, I.

V. Z. Fursov, N. B. Voltson, I. Khvalovsky, “Results of a Study of Mercury Vapour in the Tashkent Earthquake Zone,” Dokl. Akad. Nauk SSSR 179, 208 (1968).

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984).

Montán, S.

S. Montán, S. Svanberg, “A System for Industrial Surface Monitoring Utilizing Laser-Induced Fluorescence,” Appl. Phys. B 38, 241 (1985).
[CrossRef]

P. S. Andersson, S. Montán, S. Svanberg, “Remote Sample Characterization Based on Fluorescence Monitoring,” Appl. Phys. B43,to be published 1987).

Nyström, K.

Perner, D.

U. Platt, D. Perner, “Measurements of Atmospheric Trace Gases by Long Path Differential UV/Visible Absorption Spectroscopy,” in Ref. 1.

Platt, U.

U. Platt, D. Perner, “Measurements of Atmospheric Trace Gases by Long Path Differential UV/Visible Absorption Spectroscopy,” in Ref. 1.

Sunesson, A.

Svanberg, S.

Swift, R. N.

Unéus, L.

Varekamp, J. C.

J. C. Varekamp, P. R. Buseck, “Hg Anomalies in Soils: a Geochemical Exploration Method for Geothermal Areas,” Geothermics 12, 29 (1983).
[CrossRef]

Voltson, N. B.

V. Z. Fursov, N. B. Voltson, I. Khvalovsky, “Results of a Study of Mercury Vapour in the Tashkent Earthquake Zone,” Dokl. Akad. Nauk SSSR 179, 208 (1968).

Wallin, S.

Wendt, W.

H. Edner, S. Svanberg, L. Unéus, W. Wendt, “Gas-Correlation Lidar,” Opt. Lett. 9, 493 (1984).
[CrossRef] [PubMed]

B. Galle, A. Sunesson, W. Wendt, “NO2-Mapping Using Laser-Radar Techniques,” submitted to Atmospheric Environment.

Appl. Opt. (8)

Appl. Phys. B (1)

S. Montán, S. Svanberg, “A System for Industrial Surface Monitoring Utilizing Laser-Induced Fluorescence,” Appl. Phys. B 38, 241 (1985).
[CrossRef]

Can. Min. J. (1)

Q. Bristow, I. R. Jonasson, “Vapour Sensing for Mineral Exploration,” Can. Min. J. 93, 39 (1972).

Diploma Paper, Lund Reports on Atomic Physics (1)

J. Kamme, “Differential Optical Absorption Spectroscopy (DOAS) and Differential Absorption Lidar (DIAL) Applied to Atmospheric Mercury Monitoring,” Diploma Paper, Lund Reports on Atomic Physics, LRAP-65 (1986).

Dokl. Akad. Nauk SSSR (1)

V. Z. Fursov, N. B. Voltson, I. Khvalovsky, “Results of a Study of Mercury Vapour in the Tashkent Earthquake Zone,” Dokl. Akad. Nauk SSSR 179, 208 (1968).

Geothermics (1)

J. C. Varekamp, P. R. Buseck, “Hg Anomalies in Soils: a Geochemical Exploration Method for Geothermal Areas,” Geothermics 12, 29 (1983).
[CrossRef]

Opt. Lett. (1)

Report SNV PM (1)

K. Fredriksson, “Conclusions from the Evaluation and Testing of the Swedish Mobile Lidar System,” Report SNV PM1639 (1982).

Rev. Sci. Instrum. (1)

R. J. Allen, W. E. Evans, “Laser Radar (LIDAR) for Mapping Aerosol Structure,” Rev. Sci. Instrum. 43, 1422 (1972).
[CrossRef]

Other (6)

P. S. Andersson, S. Montán, S. Svanberg, “Remote Sample Characterization Based on Fluorescence Monitoring,” Appl. Phys. B43,to be published 1987).

B. Galle, A. Sunesson, W. Wendt, “NO2-Mapping Using Laser-Radar Techniques,” submitted to Atmospheric Environment.

D. K. Killinger, A. Mooradian, Eds., Optical and Laser Remote Sensing (Springer-Verlag, Heidelberg, 1983).

R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984).

U. Platt, D. Perner, “Measurements of Atmospheric Trace Gases by Long Path Differential UV/Visible Absorption Spectroscopy,” in Ref. 1.

K. Fredriksson, S. Svanberg, “Pollution Monitoring Using Nd:YAG Based Lidar Systems,” in Ref. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Mobile remote sensing laboratory with its motor generator trailer.

Fig. 2
Fig. 2

Illustration of the principle of differential absorption lidar (DIAL): (a) pollution measurement situation, (b) backscattered laser intensity for the on- and off-resonance wavelengths, (c) ratio (DIAL) curve, (d) evaluated gas concentration.

Fig. 3
Fig. 3

Schematic view of the mobile remote sensing system.

Fig. 4
Fig. 4

Telescope and optical dome arrangements.

Fig. 5
Fig. 5

Overview of the system electronics.

Fig. 6
Fig. 6

Organization of the computer software.

Fig. 7
Fig. 7

Illustration of a DIAL measurement of SO2: (a) on- and- off resonance lidar curves obtained by averaging 400 3-mJ laser shots for each wavelength; (b) ratio (DIAL) curve showing the presence of SO2; (c) SO2 concentration curve evaluated from (b).

Fig. 8
Fig. 8

Mapping of a cross section of an SO2 plume from a paper mill obtained by DIAL measurements for 20 min.

Fig. 9
Fig. 9

Simultaneous mapping of SO2 and particles. The particle density is given in relative units (R.U.).

Fig. 10
Fig. 10

Mapping of NO2 during an inversion episode. Data displayed are recorded for a total measuring time of 1 h using 5-mJ laser pulses at a repetition frequency of 10 Hz.

Metrics