Abstract

Spectrally resolved measurements of noise in resonant nitrogen coherent anti-Stokes Raman spectroscopy (CARS) are presented for three pump laser bandwidths. The experimental noise curves are compared with those calculated from a simple model involving statistically independent Stokes modes. The sources of noise in both resonant and nonresonant CARS spectra are discussed.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1 (1981).
    [CrossRef]
  2. R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics,” in Laser Applications, Vol.5, J. F. Ready, R. K. Erif, Eds. (Academic, New York,1984), pp.213–309.
  3. A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt. 23, 1328 (1984).
    [CrossRef] [PubMed]
  4. R. L. Farrow, R. P. Lucht, G. L. Clark, R. E. Palmer, “Species Concentration Measurement using CARS with Nonresonant Susceptibility Normalization,” Appl. Opt. 24, 2241 (1985).
    [CrossRef] [PubMed]
  5. L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10 Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
    [CrossRef]
  6. D. R. Snelling, R. A. Sawchuk, R. E. Mueller, “Single Pulse CARS Noise: A Comparison Between Single-Mode and Multimode Pump Lasers,” Appl. Opt. 24, 2771 (1985).
    [CrossRef] [PubMed]
  7. M. Pealat, P. Bourchardy, M. Lefebvre, J. P. Taran, “Precision of Multiplex CARS Temperature Measurements,” Appl. Opt. 24, 1012 (1985).
    [CrossRef] [PubMed]
  8. D. A. Greenhalgh, S. T. Whittley, “Mode Noise in Broadband CARS Spectroscopy,” Appl. Opt. 24, 907 (1985).
    [CrossRef] [PubMed]
  9. A. C. Eckbreth, J. H. Stufflebeam, “Considerations for the Application of CARS to Turbulent Reacting Flows,” Exp. Fluids 3, 301 (1985).
    [CrossRef]
  10. D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, T. Parameswarm, “Precision of Multiplex CARS Temperatures using both Single-Mode and Multimode Pump Lasers,” Appl. Opt. 26, 99 (1987).
    [CrossRef] [PubMed]
  11. S. Kroll, M. Alden, T. Berglind, R. J. Hall, “Noise Characteristics of Single Shot Broadband Raman-resonant CARS with Single- and Multimode Lasers,” Appl. Opt. 26, 1068 (1987).
    [CrossRef] [PubMed]
  12. R. J. Hall, D. A. Greenhalgh, “Noise Properties of Single-Pulse Coherent Anti-Stokes Raman Spectroscopy with Multimode Pump Sources,” J. Opt. Soc. Am. B 3, 1637 (1986).
    [CrossRef]
  13. R. E. Teets, presented at First International Laser Science Conferences (Dallas, 1985).
  14. L. A. Westling, M. G. Raymer, J. J. Snyder, “Single-Shot Spectral Measurements and Mode Correlations in a Multimode Pulsed Dye Laser,” J. Opt. Soc. Am. B 1, 150 (1984).
    [CrossRef]

1987 (2)

1986 (1)

1985 (5)

1984 (2)

1983 (1)

L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10 Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[CrossRef]

1981 (1)

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1 (1981).
[CrossRef]

Alden, M.

Berglind, T.

Bourchardy, P.

Clark, G. L.

Dobbs, G. M.

Druet, S. A. J.

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1 (1981).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, J. H. Stufflebeam, “Considerations for the Application of CARS to Turbulent Reacting Flows,” Exp. Fluids 3, 301 (1985).
[CrossRef]

A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt. 23, 1328 (1984).
[CrossRef] [PubMed]

R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics,” in Laser Applications, Vol.5, J. F. Ready, R. K. Erif, Eds. (Academic, New York,1984), pp.213–309.

Farrow, R. L.

Goss, L. P.

L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10 Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[CrossRef]

Greenhalgh, D. A.

Hall, R. J.

Kroll, S.

Lefebvre, M.

Lucht, R. P.

MacDonald, B. G.

L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10 Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[CrossRef]

Mueller, R. E.

Palmer, R. E.

Parameswarm, T.

Pealat, M.

Raymer, M. G.

Sawchuk, R. A.

Smallwood, G. J.

Snelling, D. R.

Snyder, J. J.

Stufflebeam, J. H.

A. C. Eckbreth, J. H. Stufflebeam, “Considerations for the Application of CARS to Turbulent Reacting Flows,” Exp. Fluids 3, 301 (1985).
[CrossRef]

A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt. 23, 1328 (1984).
[CrossRef] [PubMed]

Switzer, G. L.

L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10 Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[CrossRef]

Taran, J. P.

Taran, J. P. E.

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1 (1981).
[CrossRef]

Teets, R. E.

R. E. Teets, presented at First International Laser Science Conferences (Dallas, 1985).

Tellex, P. A.

Trump, D. D.

L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10 Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[CrossRef]

Westling, L. A.

Whittley, S. T.

Appl. Opt. (7)

Exp. Fluids (1)

A. C. Eckbreth, J. H. Stufflebeam, “Considerations for the Application of CARS to Turbulent Reacting Flows,” Exp. Fluids 3, 301 (1985).
[CrossRef]

J. Opt. Soc. Am. B (2)

Prog. Quantum Electron. (1)

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1 (1981).
[CrossRef]

Rev. Sci. Instrum. (1)

L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10 Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[CrossRef]

Other (2)

R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics,” in Laser Applications, Vol.5, J. F. Ready, R. K. Erif, Eds. (Academic, New York,1984), pp.213–309.

R. E. Teets, presented at First International Laser Science Conferences (Dallas, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Top: CARS noise (single standard deviation) for single-mode pump laser: dotted curve, theoretical; solid curve, observed. Bottom: 400 pulse average single-mode CARS spectrum. The theoretical calculations were based on an assumed dye laser mode spacing of 0.02 cm−1. The equivalent width of the asymmetric Voigt instrument function used in the calculations was 1.89 cm−1.

Fig. 2
Fig. 2

Theoretical (dotted curve) and observed (solid curve) CARS noise (single standard deviation). Top: 0.10-cm−1 multimode pump laser. Bottom: 0.69-cm−1 multimode pump laser. The theoretical calculations were based on an assumed dye laser mode spacing of 0.02 cm−1. The equivalent width of the asymmetric Voigt instrument function used in the calculations was 2.04 cm−1.

Fig. 3
Fig. 3

Theoretical CARS noise for single-mode pump laser: solid curve, 1 atm; dot–dash curve, 5 atm. The theoretical calculations were based on an assumed dye laser mode spacing of 0.02 cm−1.

Tables (1)

Tables Icon

Table I Noise Statistics: Standard Deviation σ Expressed as Percent Calculated for 15-cm−1 Bandwidth

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ I = ( k I k 2 ) 1 / 2 k I k ,
σ N 2 = σ D 2 + σ C 2 .
σ D 2 = σ 0 2 + k C ,
σ N 2 = σ M 2 + σ T 2 .

Metrics