Abstract

A source of nanosecond IR pulses tunable from 2.8 to 16 μm (3500 to 630 cm−1) is obtained by stimulated electronic Raman scattering (SERS) on the cesium 6s−5d transition. Reliable rhodamine and DCM dye-laser pulses are frequency shifted with up to 10% quantum conversion efficiency to obtain up to 2 mJ of IR pulse energy, a 5–25× improvement in energy over previous SERS infrared generation. The tuning curve structure and unwanted amplified spontaneous emission lines are also substantially reduced.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kato, “High Power Difference-Frequency Generation at 5–11 μm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698 (1984).
    [Crossref]
  2. K. Kato, “High Power Difference-Frequency Generation at 4.5–5.7 μm in LiIO3,” IEEE J. Quantum Electron. QE-21, 119 (1985).
    [Crossref]
  3. D. S. Bethune, A. C. Luntz, “A Laser Infrared Source of Nanosecond Pulses Tunable from 1.4 to 22 μ,” Appl. Phys.B 40, 107 (1986).
    [Crossref]
  4. P. Rabinowitz, B. N. Perry, N. Levinos, “A Continuously Tunable Sequential Stokes Raman Laser,” IEEE J. Quantum Electron. QE-22, 797 (1986).
    [Crossref]
  5. A. L. Harris, J. K. Brown, M. Berg, C. B. Harris, “Generation of Widely Tunable Nanosecond Pulses in the Vibrational Infrared by Stimulated Raman Scattering from the Cesium 6s−5d Transition,” Opt. Lett. 9, 47 (1984).
    [Crossref] [PubMed]
  6. D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules, (Springer-Verlag, New York, 1979), Chap. 5.
  7. D. S. Bethune, A. J. Schell-Sorokin, M. M. T. Loy, J. R. Lankard, P. P. Sorokin, “Time-Resolved Study of Photo-induced Reactions of Chlorine Dioxide,” in Advances in Laser Spectroscopy, Vol. 2, B. A. Garetz, J. R. Lombardi, Eds. (Wiley, New York, 1983), pp. 1–43.
  8. D. Cotter, D. C. Hanna, “Stimulated Electronic Raman Scattering in Cs Vapor: a Simple Tunable Laser System for the 2.7 to 3.5 μm Region,” Opt. Quantum Electron. 9, 509 (1977).
    [Crossref]
  9. D. Cotter, D. C. Hanna, R. Wyatt, “A High Power, Widely Tunable Infrared Source Based on Stimulated Electronic Raman Scattering in Cesium Vapor,” Opt. Commun. 16, 256 (1976).
    [Crossref]
  10. R. T. Hodgson, “Stimulated Electronic Raman Scattering from the 6s2S1/2 to the 5d2D5/2 State of Cesium,” Appl. Phys. Lett. 34, 58 (1979).
    [Crossref]
  11. M. Lapp, L. P. Harris, “Absorption Cross Sections of Alkali-Vapor Molecules: I. Cs2 in the Visible II. K2 in the Red,” J. Quant. Spectrosc. Radiat. Transfer 6, 169 (1966).
    [Crossref]
  12. D. R. Stull, G. C. Sinke, Thermodynamic Properties of the Elements, Advances in Chemistry Series No. 18 (American Chemical Society, Washington, DC, 1956).
  13. Quanta-Ray PDL-2 dye laser pumped by a DCR-2A Q-switched Nd:YAG laser with filled-in-beam optics.
  14. M. Berg, A. L. Harris, J. K. Brown, C. B. Harris, “Generation of Tunable Picosecond Pulses in the Vibrational Infrared by Stimulated Electronic Raman Scattering of Rhodamine-Dye-Laser Pulses from the 6s−5d Cesium Transition,” Opt. Lett. 9, 50 (1984).
    [Crossref] [PubMed]
  15. C. B. Collins, J. A. Anderson, D. Popescu, I. Popescu, “Photolytic Spectroscopy of Simple Molecules. I. The production of 5 2D Atoms from Cs2,” J. Chem. Phys. 74, 1053 (1981).
    [Crossref]
  16. C. B. Collins, F. W. Lee, J. A. Anderson, P. A. Vicharelli, D. Popescu, I. Popescu, “Photolytic Spectroscopy of Simple Molecules. II. The Production of 6p Atoms from the X1Σg State of Cs2,” J. Chem. Phys. 74, 1067 (1981).
    [Crossref]
  17. P. A. Karkkainen, “Two-Photon Resonant Parametric Generation in Alkali Metal Vapors,” Appl. Phys. 13, 159 (1977).
    [Crossref]
  18. See Ref. 6, Chap. 6.

1986 (2)

D. S. Bethune, A. C. Luntz, “A Laser Infrared Source of Nanosecond Pulses Tunable from 1.4 to 22 μ,” Appl. Phys.B 40, 107 (1986).
[Crossref]

P. Rabinowitz, B. N. Perry, N. Levinos, “A Continuously Tunable Sequential Stokes Raman Laser,” IEEE J. Quantum Electron. QE-22, 797 (1986).
[Crossref]

1985 (1)

K. Kato, “High Power Difference-Frequency Generation at 4.5–5.7 μm in LiIO3,” IEEE J. Quantum Electron. QE-21, 119 (1985).
[Crossref]

1984 (3)

1981 (2)

C. B. Collins, J. A. Anderson, D. Popescu, I. Popescu, “Photolytic Spectroscopy of Simple Molecules. I. The production of 5 2D Atoms from Cs2,” J. Chem. Phys. 74, 1053 (1981).
[Crossref]

C. B. Collins, F. W. Lee, J. A. Anderson, P. A. Vicharelli, D. Popescu, I. Popescu, “Photolytic Spectroscopy of Simple Molecules. II. The Production of 6p Atoms from the X1Σg State of Cs2,” J. Chem. Phys. 74, 1067 (1981).
[Crossref]

1979 (1)

R. T. Hodgson, “Stimulated Electronic Raman Scattering from the 6s2S1/2 to the 5d2D5/2 State of Cesium,” Appl. Phys. Lett. 34, 58 (1979).
[Crossref]

1977 (2)

D. Cotter, D. C. Hanna, “Stimulated Electronic Raman Scattering in Cs Vapor: a Simple Tunable Laser System for the 2.7 to 3.5 μm Region,” Opt. Quantum Electron. 9, 509 (1977).
[Crossref]

P. A. Karkkainen, “Two-Photon Resonant Parametric Generation in Alkali Metal Vapors,” Appl. Phys. 13, 159 (1977).
[Crossref]

1976 (1)

D. Cotter, D. C. Hanna, R. Wyatt, “A High Power, Widely Tunable Infrared Source Based on Stimulated Electronic Raman Scattering in Cesium Vapor,” Opt. Commun. 16, 256 (1976).
[Crossref]

1966 (1)

M. Lapp, L. P. Harris, “Absorption Cross Sections of Alkali-Vapor Molecules: I. Cs2 in the Visible II. K2 in the Red,” J. Quant. Spectrosc. Radiat. Transfer 6, 169 (1966).
[Crossref]

Anderson, J. A.

C. B. Collins, J. A. Anderson, D. Popescu, I. Popescu, “Photolytic Spectroscopy of Simple Molecules. I. The production of 5 2D Atoms from Cs2,” J. Chem. Phys. 74, 1053 (1981).
[Crossref]

C. B. Collins, F. W. Lee, J. A. Anderson, P. A. Vicharelli, D. Popescu, I. Popescu, “Photolytic Spectroscopy of Simple Molecules. II. The Production of 6p Atoms from the X1Σg State of Cs2,” J. Chem. Phys. 74, 1067 (1981).
[Crossref]

Berg, M.

Bethune, D. S.

D. S. Bethune, A. C. Luntz, “A Laser Infrared Source of Nanosecond Pulses Tunable from 1.4 to 22 μ,” Appl. Phys.B 40, 107 (1986).
[Crossref]

D. S. Bethune, A. J. Schell-Sorokin, M. M. T. Loy, J. R. Lankard, P. P. Sorokin, “Time-Resolved Study of Photo-induced Reactions of Chlorine Dioxide,” in Advances in Laser Spectroscopy, Vol. 2, B. A. Garetz, J. R. Lombardi, Eds. (Wiley, New York, 1983), pp. 1–43.

Brown, J. K.

Collins, C. B.

C. B. Collins, J. A. Anderson, D. Popescu, I. Popescu, “Photolytic Spectroscopy of Simple Molecules. I. The production of 5 2D Atoms from Cs2,” J. Chem. Phys. 74, 1053 (1981).
[Crossref]

C. B. Collins, F. W. Lee, J. A. Anderson, P. A. Vicharelli, D. Popescu, I. Popescu, “Photolytic Spectroscopy of Simple Molecules. II. The Production of 6p Atoms from the X1Σg State of Cs2,” J. Chem. Phys. 74, 1067 (1981).
[Crossref]

Cotter, D.

D. Cotter, D. C. Hanna, “Stimulated Electronic Raman Scattering in Cs Vapor: a Simple Tunable Laser System for the 2.7 to 3.5 μm Region,” Opt. Quantum Electron. 9, 509 (1977).
[Crossref]

D. Cotter, D. C. Hanna, R. Wyatt, “A High Power, Widely Tunable Infrared Source Based on Stimulated Electronic Raman Scattering in Cesium Vapor,” Opt. Commun. 16, 256 (1976).
[Crossref]

D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules, (Springer-Verlag, New York, 1979), Chap. 5.

Hanna, D. C.

D. Cotter, D. C. Hanna, “Stimulated Electronic Raman Scattering in Cs Vapor: a Simple Tunable Laser System for the 2.7 to 3.5 μm Region,” Opt. Quantum Electron. 9, 509 (1977).
[Crossref]

D. Cotter, D. C. Hanna, R. Wyatt, “A High Power, Widely Tunable Infrared Source Based on Stimulated Electronic Raman Scattering in Cesium Vapor,” Opt. Commun. 16, 256 (1976).
[Crossref]

D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules, (Springer-Verlag, New York, 1979), Chap. 5.

Harris, A. L.

Harris, C. B.

Harris, L. P.

M. Lapp, L. P. Harris, “Absorption Cross Sections of Alkali-Vapor Molecules: I. Cs2 in the Visible II. K2 in the Red,” J. Quant. Spectrosc. Radiat. Transfer 6, 169 (1966).
[Crossref]

Hodgson, R. T.

R. T. Hodgson, “Stimulated Electronic Raman Scattering from the 6s2S1/2 to the 5d2D5/2 State of Cesium,” Appl. Phys. Lett. 34, 58 (1979).
[Crossref]

Karkkainen, P. A.

P. A. Karkkainen, “Two-Photon Resonant Parametric Generation in Alkali Metal Vapors,” Appl. Phys. 13, 159 (1977).
[Crossref]

Kato, K.

K. Kato, “High Power Difference-Frequency Generation at 4.5–5.7 μm in LiIO3,” IEEE J. Quantum Electron. QE-21, 119 (1985).
[Crossref]

K. Kato, “High Power Difference-Frequency Generation at 5–11 μm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698 (1984).
[Crossref]

Lankard, J. R.

D. S. Bethune, A. J. Schell-Sorokin, M. M. T. Loy, J. R. Lankard, P. P. Sorokin, “Time-Resolved Study of Photo-induced Reactions of Chlorine Dioxide,” in Advances in Laser Spectroscopy, Vol. 2, B. A. Garetz, J. R. Lombardi, Eds. (Wiley, New York, 1983), pp. 1–43.

Lapp, M.

M. Lapp, L. P. Harris, “Absorption Cross Sections of Alkali-Vapor Molecules: I. Cs2 in the Visible II. K2 in the Red,” J. Quant. Spectrosc. Radiat. Transfer 6, 169 (1966).
[Crossref]

Lee, F. W.

C. B. Collins, F. W. Lee, J. A. Anderson, P. A. Vicharelli, D. Popescu, I. Popescu, “Photolytic Spectroscopy of Simple Molecules. II. The Production of 6p Atoms from the X1Σg State of Cs2,” J. Chem. Phys. 74, 1067 (1981).
[Crossref]

Levinos, N.

P. Rabinowitz, B. N. Perry, N. Levinos, “A Continuously Tunable Sequential Stokes Raman Laser,” IEEE J. Quantum Electron. QE-22, 797 (1986).
[Crossref]

Loy, M. M. T.

D. S. Bethune, A. J. Schell-Sorokin, M. M. T. Loy, J. R. Lankard, P. P. Sorokin, “Time-Resolved Study of Photo-induced Reactions of Chlorine Dioxide,” in Advances in Laser Spectroscopy, Vol. 2, B. A. Garetz, J. R. Lombardi, Eds. (Wiley, New York, 1983), pp. 1–43.

Luntz, A. C.

D. S. Bethune, A. C. Luntz, “A Laser Infrared Source of Nanosecond Pulses Tunable from 1.4 to 22 μ,” Appl. Phys.B 40, 107 (1986).
[Crossref]

Perry, B. N.

P. Rabinowitz, B. N. Perry, N. Levinos, “A Continuously Tunable Sequential Stokes Raman Laser,” IEEE J. Quantum Electron. QE-22, 797 (1986).
[Crossref]

Popescu, D.

C. B. Collins, J. A. Anderson, D. Popescu, I. Popescu, “Photolytic Spectroscopy of Simple Molecules. I. The production of 5 2D Atoms from Cs2,” J. Chem. Phys. 74, 1053 (1981).
[Crossref]

C. B. Collins, F. W. Lee, J. A. Anderson, P. A. Vicharelli, D. Popescu, I. Popescu, “Photolytic Spectroscopy of Simple Molecules. II. The Production of 6p Atoms from the X1Σg State of Cs2,” J. Chem. Phys. 74, 1067 (1981).
[Crossref]

Popescu, I.

C. B. Collins, F. W. Lee, J. A. Anderson, P. A. Vicharelli, D. Popescu, I. Popescu, “Photolytic Spectroscopy of Simple Molecules. II. The Production of 6p Atoms from the X1Σg State of Cs2,” J. Chem. Phys. 74, 1067 (1981).
[Crossref]

C. B. Collins, J. A. Anderson, D. Popescu, I. Popescu, “Photolytic Spectroscopy of Simple Molecules. I. The production of 5 2D Atoms from Cs2,” J. Chem. Phys. 74, 1053 (1981).
[Crossref]

Rabinowitz, P.

P. Rabinowitz, B. N. Perry, N. Levinos, “A Continuously Tunable Sequential Stokes Raman Laser,” IEEE J. Quantum Electron. QE-22, 797 (1986).
[Crossref]

Schell-Sorokin, A. J.

D. S. Bethune, A. J. Schell-Sorokin, M. M. T. Loy, J. R. Lankard, P. P. Sorokin, “Time-Resolved Study of Photo-induced Reactions of Chlorine Dioxide,” in Advances in Laser Spectroscopy, Vol. 2, B. A. Garetz, J. R. Lombardi, Eds. (Wiley, New York, 1983), pp. 1–43.

Sinke, G. C.

D. R. Stull, G. C. Sinke, Thermodynamic Properties of the Elements, Advances in Chemistry Series No. 18 (American Chemical Society, Washington, DC, 1956).

Sorokin, P. P.

D. S. Bethune, A. J. Schell-Sorokin, M. M. T. Loy, J. R. Lankard, P. P. Sorokin, “Time-Resolved Study of Photo-induced Reactions of Chlorine Dioxide,” in Advances in Laser Spectroscopy, Vol. 2, B. A. Garetz, J. R. Lombardi, Eds. (Wiley, New York, 1983), pp. 1–43.

Stull, D. R.

D. R. Stull, G. C. Sinke, Thermodynamic Properties of the Elements, Advances in Chemistry Series No. 18 (American Chemical Society, Washington, DC, 1956).

Vicharelli, P. A.

C. B. Collins, F. W. Lee, J. A. Anderson, P. A. Vicharelli, D. Popescu, I. Popescu, “Photolytic Spectroscopy of Simple Molecules. II. The Production of 6p Atoms from the X1Σg State of Cs2,” J. Chem. Phys. 74, 1067 (1981).
[Crossref]

Wyatt, R.

D. Cotter, D. C. Hanna, R. Wyatt, “A High Power, Widely Tunable Infrared Source Based on Stimulated Electronic Raman Scattering in Cesium Vapor,” Opt. Commun. 16, 256 (1976).
[Crossref]

Yuratich, M. A.

D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules, (Springer-Verlag, New York, 1979), Chap. 5.

Appl. Phys. (1)

P. A. Karkkainen, “Two-Photon Resonant Parametric Generation in Alkali Metal Vapors,” Appl. Phys. 13, 159 (1977).
[Crossref]

Appl. Phys. Lett. (1)

R. T. Hodgson, “Stimulated Electronic Raman Scattering from the 6s2S1/2 to the 5d2D5/2 State of Cesium,” Appl. Phys. Lett. 34, 58 (1979).
[Crossref]

Appl. Phys.B (1)

D. S. Bethune, A. C. Luntz, “A Laser Infrared Source of Nanosecond Pulses Tunable from 1.4 to 22 μ,” Appl. Phys.B 40, 107 (1986).
[Crossref]

IEEE J. Quantum Electron. (3)

P. Rabinowitz, B. N. Perry, N. Levinos, “A Continuously Tunable Sequential Stokes Raman Laser,” IEEE J. Quantum Electron. QE-22, 797 (1986).
[Crossref]

K. Kato, “High Power Difference-Frequency Generation at 5–11 μm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698 (1984).
[Crossref]

K. Kato, “High Power Difference-Frequency Generation at 4.5–5.7 μm in LiIO3,” IEEE J. Quantum Electron. QE-21, 119 (1985).
[Crossref]

J. Chem. Phys. (2)

C. B. Collins, J. A. Anderson, D. Popescu, I. Popescu, “Photolytic Spectroscopy of Simple Molecules. I. The production of 5 2D Atoms from Cs2,” J. Chem. Phys. 74, 1053 (1981).
[Crossref]

C. B. Collins, F. W. Lee, J. A. Anderson, P. A. Vicharelli, D. Popescu, I. Popescu, “Photolytic Spectroscopy of Simple Molecules. II. The Production of 6p Atoms from the X1Σg State of Cs2,” J. Chem. Phys. 74, 1067 (1981).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

M. Lapp, L. P. Harris, “Absorption Cross Sections of Alkali-Vapor Molecules: I. Cs2 in the Visible II. K2 in the Red,” J. Quant. Spectrosc. Radiat. Transfer 6, 169 (1966).
[Crossref]

Opt. Commun. (1)

D. Cotter, D. C. Hanna, R. Wyatt, “A High Power, Widely Tunable Infrared Source Based on Stimulated Electronic Raman Scattering in Cesium Vapor,” Opt. Commun. 16, 256 (1976).
[Crossref]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

D. Cotter, D. C. Hanna, “Stimulated Electronic Raman Scattering in Cs Vapor: a Simple Tunable Laser System for the 2.7 to 3.5 μm Region,” Opt. Quantum Electron. 9, 509 (1977).
[Crossref]

Other (5)

D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules, (Springer-Verlag, New York, 1979), Chap. 5.

D. S. Bethune, A. J. Schell-Sorokin, M. M. T. Loy, J. R. Lankard, P. P. Sorokin, “Time-Resolved Study of Photo-induced Reactions of Chlorine Dioxide,” in Advances in Laser Spectroscopy, Vol. 2, B. A. Garetz, J. R. Lombardi, Eds. (Wiley, New York, 1983), pp. 1–43.

D. R. Stull, G. C. Sinke, Thermodynamic Properties of the Elements, Advances in Chemistry Series No. 18 (American Chemical Society, Washington, DC, 1956).

Quanta-Ray PDL-2 dye laser pumped by a DCR-2A Q-switched Nd:YAG laser with filled-in-beam optics.

See Ref. 6, Chap. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Partial energy level diagram of the cesium atom. Electronic Raman scattering on the 6s–5d2D5/2 transition is diagrammed by solid arrows. Dashed arrows illustrate two-photon emission from the 5d2D5/2 level (see text).

Fig. 2
Fig. 2

Diagram of the split wick heat pipe which contains the cesium vapor column for SERS infrared generation.

Fig. 3
Fig. 3

Infrared tuning curves obtained by SERS in cesium vapor with rhodamine dyes in the pump laser. Vertical scale is logarithmic: a, rhodamine 590 in methanol (oscillator) and methanol/water (amplifier); b, rhodamine 610 in methanol; c, Kiton Red in methanol/water; d, rhodamine 640 in methanol.

Fig. 4
Fig. 4

Infrared tuning curve obtained with DCM dye in pump laser. The vertical scale is logarithmic. Tuning gaps are discussed in text.

Metrics