Abstract

A description is given of a new facility, located at the NBS (Gaithersburg) Synchrotron Ultraviolet Radiation Facility (SURF-II), in which the absolute calibration of working standard detectors for the 5–50-nm spectral region, and the subsequent calibration of outgoing transfer standard detectors is performed. A dual toroidal grating monochromator, with diffraction gratings optimized for 3–13 and 12–52 nm, disperses synchrotron radiation from the electron storage ring into tandem experimental chambers in which a rare gas ionization chamber determines the absolute magnitude of the incident radiant flux and hence the efficiency of the photoemissive photodiodes.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. R. Samson, “Intensity Measurements in VUV,” J. Opt. Soc. Am. 54, 6 (1964).
    [CrossRef]
  2. R. G. Johnston, R. P. Madden, “On the Use of Thermopiles for Absolute Radiometry in the Far UV,” Appl. Opt. 4, 1574 (1965).
    [CrossRef]
  3. L. R. Canfield, R. G. Johnston, K. Codling, R. P. Madden, “Comparison of an Ionization Chamber and a Thermopile as Absolute Detectors in the Extreme Ultraviolet,” Appl. Opt. 6, 1886 (1967).
    [CrossRef] [PubMed]
  4. L. R. Canfield, R. G. Johnston, R. P. Madden, “Detector Standard for the Far UV,” Appl. Opt. 12, 1611 (1973).
    [CrossRef] [PubMed]
  5. E. B. Saloman, D. L. Ederer, “Absolute Radiometric Calibration of Detectors Between 200–600,” Appl. Opt. 14, 1029 (1975).
    [CrossRef] [PubMed]
  6. E. B. Saloman, “The Use of Synchrotron Radiation for Detector Calibrations,” Nucl. Instrum. Methods 172, 79 (1980).
    [CrossRef]
  7. K. Codling, R. P. Madden, “Structure in the LII,III Absorption of Aluminum and its Oxides,” Phys. Rev. 167, 587 (1968).
    [CrossRef]
  8. K. Codling, R. P. Madden, “Optically Observed Inner Shell Excitation in Neutral Kr and Xe,” Phys. Rev. Lett. 12, 1 (1964).
    [CrossRef]
  9. R. P. Madden, D. L. Ederer, K. Codling, “Resonances in the Photo-ionization Continuum of Ar I (20–150 eV),” Phys. Rev. 177, 136 (1969).
    [CrossRef]
  10. J. A. R. Samson, G. N. Haddad, “Absolute Photon-Flux Measurements in the Vacuum Ultraviolet,” J. Opt. Soc. Am. 64, 47 (1974).
    [CrossRef]

1980 (1)

E. B. Saloman, “The Use of Synchrotron Radiation for Detector Calibrations,” Nucl. Instrum. Methods 172, 79 (1980).
[CrossRef]

1975 (1)

1974 (1)

1973 (1)

1969 (1)

R. P. Madden, D. L. Ederer, K. Codling, “Resonances in the Photo-ionization Continuum of Ar I (20–150 eV),” Phys. Rev. 177, 136 (1969).
[CrossRef]

1968 (1)

K. Codling, R. P. Madden, “Structure in the LII,III Absorption of Aluminum and its Oxides,” Phys. Rev. 167, 587 (1968).
[CrossRef]

1967 (1)

1965 (1)

1964 (2)

K. Codling, R. P. Madden, “Optically Observed Inner Shell Excitation in Neutral Kr and Xe,” Phys. Rev. Lett. 12, 1 (1964).
[CrossRef]

J. A. R. Samson, “Intensity Measurements in VUV,” J. Opt. Soc. Am. 54, 6 (1964).
[CrossRef]

Canfield, L. R.

Codling, K.

R. P. Madden, D. L. Ederer, K. Codling, “Resonances in the Photo-ionization Continuum of Ar I (20–150 eV),” Phys. Rev. 177, 136 (1969).
[CrossRef]

K. Codling, R. P. Madden, “Structure in the LII,III Absorption of Aluminum and its Oxides,” Phys. Rev. 167, 587 (1968).
[CrossRef]

L. R. Canfield, R. G. Johnston, K. Codling, R. P. Madden, “Comparison of an Ionization Chamber and a Thermopile as Absolute Detectors in the Extreme Ultraviolet,” Appl. Opt. 6, 1886 (1967).
[CrossRef] [PubMed]

K. Codling, R. P. Madden, “Optically Observed Inner Shell Excitation in Neutral Kr and Xe,” Phys. Rev. Lett. 12, 1 (1964).
[CrossRef]

Ederer, D. L.

E. B. Saloman, D. L. Ederer, “Absolute Radiometric Calibration of Detectors Between 200–600,” Appl. Opt. 14, 1029 (1975).
[CrossRef] [PubMed]

R. P. Madden, D. L. Ederer, K. Codling, “Resonances in the Photo-ionization Continuum of Ar I (20–150 eV),” Phys. Rev. 177, 136 (1969).
[CrossRef]

Haddad, G. N.

Johnston, R. G.

Madden, R. P.

L. R. Canfield, R. G. Johnston, R. P. Madden, “Detector Standard for the Far UV,” Appl. Opt. 12, 1611 (1973).
[CrossRef] [PubMed]

R. P. Madden, D. L. Ederer, K. Codling, “Resonances in the Photo-ionization Continuum of Ar I (20–150 eV),” Phys. Rev. 177, 136 (1969).
[CrossRef]

K. Codling, R. P. Madden, “Structure in the LII,III Absorption of Aluminum and its Oxides,” Phys. Rev. 167, 587 (1968).
[CrossRef]

L. R. Canfield, R. G. Johnston, K. Codling, R. P. Madden, “Comparison of an Ionization Chamber and a Thermopile as Absolute Detectors in the Extreme Ultraviolet,” Appl. Opt. 6, 1886 (1967).
[CrossRef] [PubMed]

R. G. Johnston, R. P. Madden, “On the Use of Thermopiles for Absolute Radiometry in the Far UV,” Appl. Opt. 4, 1574 (1965).
[CrossRef]

K. Codling, R. P. Madden, “Optically Observed Inner Shell Excitation in Neutral Kr and Xe,” Phys. Rev. Lett. 12, 1 (1964).
[CrossRef]

Saloman, E. B.

E. B. Saloman, “The Use of Synchrotron Radiation for Detector Calibrations,” Nucl. Instrum. Methods 172, 79 (1980).
[CrossRef]

E. B. Saloman, D. L. Ederer, “Absolute Radiometric Calibration of Detectors Between 200–600,” Appl. Opt. 14, 1029 (1975).
[CrossRef] [PubMed]

Samson, J. A. R.

Appl. Opt. (4)

J. Opt. Soc. Am. (2)

Nucl. Instrum. Methods (1)

E. B. Saloman, “The Use of Synchrotron Radiation for Detector Calibrations,” Nucl. Instrum. Methods 172, 79 (1980).
[CrossRef]

Phys. Rev. (2)

K. Codling, R. P. Madden, “Structure in the LII,III Absorption of Aluminum and its Oxides,” Phys. Rev. 167, 587 (1968).
[CrossRef]

R. P. Madden, D. L. Ederer, K. Codling, “Resonances in the Photo-ionization Continuum of Ar I (20–150 eV),” Phys. Rev. 177, 136 (1969).
[CrossRef]

Phys. Rev. Lett. (1)

K. Codling, R. P. Madden, “Optically Observed Inner Shell Excitation in Neutral Kr and Xe,” Phys. Rev. Lett. 12, 1 (1964).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of NBS windowless far ultraviolet transfer standard photodiode. The diameter of the photocathode is ∼2.5 cm.

Fig. 2
Fig. 2

New far-UV detector calibration system at NBS SURF-II.

Fig. 3
Fig. 3

Calculated resolution of 1200-line/mm grating used in DTGM with an illuminated area of 3.6 (perpendicular to rulings) by 1.2 cm. A similar plot for the 300-line/mm grating would scale 4 times larger in both resolution and wavelength.

Fig. 4
Fig. 4

Schematic of rare gas ionization chamber absolute detector.

Fig. 5
Fig. 5

Typical first-order radiant flux from the 300-line/mm grating incident on the working standard photodiode. A 1-mm exit slit was used, and the aluminum filter normally used with this grating was in place.

Fig. 6
Fig. 6

Typical first-order radiant flux from the 1200-line/mm grating incident on the working standard photodiode. A 1-mm exit slit was used, and the VYNS filter normally used with this grating was in place.

Fig. 7
Fig. 7

Transmittance of Al foil showing LII,III edge (1200-line/mm grating).

Fig. 8
Fig. 8

Relative ion current showing inner shell electron excitation in neutral Kr (1200-line/mm grating).

Fig. 9
Fig. 9

Relative ion current showing structure in Ar i (300-line/mm grating).

Tables (1)

Tables Icon

Table I Design Parameters for Gratings used in DTGM at New SURF-II Detector Calibration Facility

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I = i e [ i exp ( u k ) ] ,
C = i H [ 1 exp ( u k L ) ] i L [ 1 exp ( u k H ) ] ,
E 1 = i D E 2 e I 2 e I 1 .
i 1 = f Q 1 i Q 2 y 2 ( 1 f ) + f Q 1 y 1 ,
i 2 = i i 1 y 1 y 2 ,
f = m 2 ( 1 r b ) r ( m 1 a m 2 b ) + m 2 m 1 ,
m 1 = C 1 ( 1 a ) m 2 = C 2 ( 1 b ) .

Metrics