Abstract

We have produced complex software adjustable laser pulse shapes with ∼10-ps resolution, and pulse energies up to 100 μJ for spectroscopic applications. The key devices are a high damage threshold electrooptic directional coupler and a GaAs circuit for synthesizing arbitrarily shaped microwave pulses.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).
  2. M. S. Silver, R. I. Joseph, D. I. Hoult, Phys. Rev. A 31, 2753 (1985).
    [Crossref] [PubMed]
  3. C. P. Lin, J. Bates, J. T. Mayer, W. S. Warren, “Implementation of a Phase and Amplitude Modulated π Pulse for Coherent Optical Spectroscopy,” J. Chem. Phys. (submitted).
  4. M. Haner, W. S. Warren, to be submitted for publication;L. P. Mollenauer, J. P. Gordon, M. N. Islam, “Soliton Propagation in Long Fibers with Periodically Compensated Loss,” IEEE J. Quantum Electron QE-22, 157 (1986).
    [Crossref]
  5. W. S. Warren, “Effects of Arbitrary Pulse Shapes on Population Inversion and Coherence,” J. Chem. Phys. 81, 5437 (1984).
    [Crossref]
  6. W. S. Warren, J. Bates, M. McCoy, M. Navratil, L. Mueller, “There were no Pi Pulses in Iodine Vapor: Crafted Pulses to Compensate for Rabi-Frequency Inhomogeneities,” J. Opt. Sci. Am. B3, 488 (1986).
  7. A. M. Weiner, J. P. Heritage, R. N. Thurston, “Synthesis of Phase-Coherent, Picosecond Optical Square Pulses,” Opt. Lett. 11, 153(1986).
    [Crossref] [PubMed]
  8. A preliminary report of this work is M. Haner, F. Spano, W. S. Warren, “Picosecond Pulse Shaping and Phase Shifting for Molecular Spectroscopy,” in Ultrafast Phenomena, Vol. 5, G. Fleming, A. Siegman, Eds. (Springer-Verlag, Berlin, 1986).
  9. K. Morishita, “Index Profiling of Three-Dimensional Optical Waveguides by the Propagation-Mode Near-Field Method,” IEEE/OSAJ. Lightwave Technol. LT-4, 1120 (1986).
    [Crossref]
  10. H. Kogelnik, R. V. Schmidt, “Switched Directional Couplers with Alternating Δβ,” IEEE J. Quantum Electron. QE-12, 392 (1976).
  11. R. C. Alferness, “Electrooptic Guided-Wave Device for General Polarization Transformations,” IEEE J. Quantum Electron. QE-17, 965 (1981).
    [Crossref]
  12. R. C. Alferness, C. H. Joyner, L. L. Buhl, S. K. Korotky, “High Speed Traveling-Wave Directional Coupler Switch/Modulator for λ = 1.32 μm,”IEEE J. Quantum Electron. QE-19, 1339 (1983);T. Sueta, M. Izutsu, “High-Speed Guided-Wave Optical Components,” inTechnical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1981), paper TUM 2.
    [Crossref]
  13. K. Kubota, J. Noda, O. Mikami, “Traveling-Wave Optical Modulator using Directional Coupler LiNbO3 Waveguide,” IEEE J. Quantum Electron. QE-16, 754 (1981).
  14. R. C. Alferness, “Waveguide Electrooptic Modulators,” IEEE Trans. Microwave Theory Tech. MTT-30, 1121 (1982).
    [Crossref]
  15. S. K. Korotky, R. C. Alferness, “Time-and Frequency-Domain Response of Directional-Coupler Traveling-Wave Optical Modulators,” IEEE/OSA J. Lightwave Technol. LT-1, 244 (1983).
    [Crossref]
  16. R. S. Tucker, S. K. Korotky, G. Eisenstein, U. Koren, L. W. Schultz, J. J. Vaselka, “20 GHz Active mode-Locking of a 1.55 μm InGaAsP Laser,” Electron. Lett. 21, 239 (1985).
    [Crossref]
  17. H. M. Cronson, “Picosecond-Pulse Sequential Waveform Generation,” IEEE Trans. Microwave Theory Tech. MTT-23, 1048 (1975).
    [Crossref]
  18. K. B. Bhasin, D. J. Connolly, “Advances in Gallium Arsenide Monolithic Microwave Integrated-Circuit Technology for Space Communications Systems,” IEEE Trans. Microwave Theory Tech. MTT-34, 994 (1986).
    [Crossref]
  19. P. C. Chao, P. M. Smith, U. K. Mishra, S. C. Palmateer, K. H. G. Duh, J. C. M. Hwang, “Quarter-Micron Low-Noise High-Electron Mobility Transistors,” in Proceedings, IEEE Cornell Conference Advanced Concepts High-Speed Semiconductor Devices and Circuits (July1985).
  20. A. Barna, C. A. Liecht, “Optimization of GaAs MESFET Logic Gates with Subnanosecond Propagation Delays,” IEEE J. Solid-State Circuits SC-14, 708 (1979).
    [Crossref]
  21. W. A. Wooster, A. Breton, Experimental Crystal Physics, (Oxford University Press, London1970).
  22. S. B. Cohn, “Slot Line on a Dielectric Substrate,” IEEE Trans. Microwave Theory Tech. MTT-17, 833 (1969);R. E. Collin, Field Theory of Guided Waves (McGraw-Hill, New York, 1960).
  23. M. D. Feit, J. A. Fleck, L. McCaughan, “Comparison of Calculated and Measured Performance of Diffused Channel-Waveguide Couplers,” J. Opt. Soc. Am. 73, 1296 (1983).
    [Crossref]
  24. O. Seddiki, A. Goddi, R. Mounet, J. F. Morhange, C. Hirliman, “New Optical Design for a Jet Amplifier,” in Ultrafast Phenomena, Vol. 5, G. Fleming, A. Siegman, Eds. (Springer Verlag, Berlin, 1986);W. H. Knox, M. C. Downer, R. L. Fork, C. V. Shank, “Amplified Femtosecond Optical Pulses and Continuum Generation at 5-kHz Repetition Rate,” Opt. Lett. 9, 552 (1984).
    [Crossref] [PubMed]

1986 (4)

K. Morishita, “Index Profiling of Three-Dimensional Optical Waveguides by the Propagation-Mode Near-Field Method,” IEEE/OSAJ. Lightwave Technol. LT-4, 1120 (1986).
[Crossref]

K. B. Bhasin, D. J. Connolly, “Advances in Gallium Arsenide Monolithic Microwave Integrated-Circuit Technology for Space Communications Systems,” IEEE Trans. Microwave Theory Tech. MTT-34, 994 (1986).
[Crossref]

W. S. Warren, J. Bates, M. McCoy, M. Navratil, L. Mueller, “There were no Pi Pulses in Iodine Vapor: Crafted Pulses to Compensate for Rabi-Frequency Inhomogeneities,” J. Opt. Sci. Am. B3, 488 (1986).

A. M. Weiner, J. P. Heritage, R. N. Thurston, “Synthesis of Phase-Coherent, Picosecond Optical Square Pulses,” Opt. Lett. 11, 153(1986).
[Crossref] [PubMed]

1985 (3)

M. S. Silver, R. I. Joseph, D. I. Hoult, Phys. Rev. A 31, 2753 (1985).
[Crossref] [PubMed]

P. C. Chao, P. M. Smith, U. K. Mishra, S. C. Palmateer, K. H. G. Duh, J. C. M. Hwang, “Quarter-Micron Low-Noise High-Electron Mobility Transistors,” in Proceedings, IEEE Cornell Conference Advanced Concepts High-Speed Semiconductor Devices and Circuits (July1985).

R. S. Tucker, S. K. Korotky, G. Eisenstein, U. Koren, L. W. Schultz, J. J. Vaselka, “20 GHz Active mode-Locking of a 1.55 μm InGaAsP Laser,” Electron. Lett. 21, 239 (1985).
[Crossref]

1984 (1)

W. S. Warren, “Effects of Arbitrary Pulse Shapes on Population Inversion and Coherence,” J. Chem. Phys. 81, 5437 (1984).
[Crossref]

1983 (3)

M. D. Feit, J. A. Fleck, L. McCaughan, “Comparison of Calculated and Measured Performance of Diffused Channel-Waveguide Couplers,” J. Opt. Soc. Am. 73, 1296 (1983).
[Crossref]

R. C. Alferness, C. H. Joyner, L. L. Buhl, S. K. Korotky, “High Speed Traveling-Wave Directional Coupler Switch/Modulator for λ = 1.32 μm,”IEEE J. Quantum Electron. QE-19, 1339 (1983);T. Sueta, M. Izutsu, “High-Speed Guided-Wave Optical Components,” inTechnical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1981), paper TUM 2.
[Crossref]

S. K. Korotky, R. C. Alferness, “Time-and Frequency-Domain Response of Directional-Coupler Traveling-Wave Optical Modulators,” IEEE/OSA J. Lightwave Technol. LT-1, 244 (1983).
[Crossref]

1982 (1)

R. C. Alferness, “Waveguide Electrooptic Modulators,” IEEE Trans. Microwave Theory Tech. MTT-30, 1121 (1982).
[Crossref]

1981 (2)

R. C. Alferness, “Electrooptic Guided-Wave Device for General Polarization Transformations,” IEEE J. Quantum Electron. QE-17, 965 (1981).
[Crossref]

K. Kubota, J. Noda, O. Mikami, “Traveling-Wave Optical Modulator using Directional Coupler LiNbO3 Waveguide,” IEEE J. Quantum Electron. QE-16, 754 (1981).

1979 (1)

A. Barna, C. A. Liecht, “Optimization of GaAs MESFET Logic Gates with Subnanosecond Propagation Delays,” IEEE J. Solid-State Circuits SC-14, 708 (1979).
[Crossref]

1976 (1)

H. Kogelnik, R. V. Schmidt, “Switched Directional Couplers with Alternating Δβ,” IEEE J. Quantum Electron. QE-12, 392 (1976).

1975 (1)

H. M. Cronson, “Picosecond-Pulse Sequential Waveform Generation,” IEEE Trans. Microwave Theory Tech. MTT-23, 1048 (1975).
[Crossref]

1969 (1)

S. B. Cohn, “Slot Line on a Dielectric Substrate,” IEEE Trans. Microwave Theory Tech. MTT-17, 833 (1969);R. E. Collin, Field Theory of Guided Waves (McGraw-Hill, New York, 1960).

Alferness, R. C.

R. C. Alferness, C. H. Joyner, L. L. Buhl, S. K. Korotky, “High Speed Traveling-Wave Directional Coupler Switch/Modulator for λ = 1.32 μm,”IEEE J. Quantum Electron. QE-19, 1339 (1983);T. Sueta, M. Izutsu, “High-Speed Guided-Wave Optical Components,” inTechnical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1981), paper TUM 2.
[Crossref]

S. K. Korotky, R. C. Alferness, “Time-and Frequency-Domain Response of Directional-Coupler Traveling-Wave Optical Modulators,” IEEE/OSA J. Lightwave Technol. LT-1, 244 (1983).
[Crossref]

R. C. Alferness, “Waveguide Electrooptic Modulators,” IEEE Trans. Microwave Theory Tech. MTT-30, 1121 (1982).
[Crossref]

R. C. Alferness, “Electrooptic Guided-Wave Device for General Polarization Transformations,” IEEE J. Quantum Electron. QE-17, 965 (1981).
[Crossref]

Allen, L.

L. Allen, J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).

Barna, A.

A. Barna, C. A. Liecht, “Optimization of GaAs MESFET Logic Gates with Subnanosecond Propagation Delays,” IEEE J. Solid-State Circuits SC-14, 708 (1979).
[Crossref]

Bates, J.

W. S. Warren, J. Bates, M. McCoy, M. Navratil, L. Mueller, “There were no Pi Pulses in Iodine Vapor: Crafted Pulses to Compensate for Rabi-Frequency Inhomogeneities,” J. Opt. Sci. Am. B3, 488 (1986).

C. P. Lin, J. Bates, J. T. Mayer, W. S. Warren, “Implementation of a Phase and Amplitude Modulated π Pulse for Coherent Optical Spectroscopy,” J. Chem. Phys. (submitted).

Bhasin, K. B.

K. B. Bhasin, D. J. Connolly, “Advances in Gallium Arsenide Monolithic Microwave Integrated-Circuit Technology for Space Communications Systems,” IEEE Trans. Microwave Theory Tech. MTT-34, 994 (1986).
[Crossref]

Breton, A.

W. A. Wooster, A. Breton, Experimental Crystal Physics, (Oxford University Press, London1970).

Buhl, L. L.

R. C. Alferness, C. H. Joyner, L. L. Buhl, S. K. Korotky, “High Speed Traveling-Wave Directional Coupler Switch/Modulator for λ = 1.32 μm,”IEEE J. Quantum Electron. QE-19, 1339 (1983);T. Sueta, M. Izutsu, “High-Speed Guided-Wave Optical Components,” inTechnical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1981), paper TUM 2.
[Crossref]

Chao, P. C.

P. C. Chao, P. M. Smith, U. K. Mishra, S. C. Palmateer, K. H. G. Duh, J. C. M. Hwang, “Quarter-Micron Low-Noise High-Electron Mobility Transistors,” in Proceedings, IEEE Cornell Conference Advanced Concepts High-Speed Semiconductor Devices and Circuits (July1985).

Cohn, S. B.

S. B. Cohn, “Slot Line on a Dielectric Substrate,” IEEE Trans. Microwave Theory Tech. MTT-17, 833 (1969);R. E. Collin, Field Theory of Guided Waves (McGraw-Hill, New York, 1960).

Connolly, D. J.

K. B. Bhasin, D. J. Connolly, “Advances in Gallium Arsenide Monolithic Microwave Integrated-Circuit Technology for Space Communications Systems,” IEEE Trans. Microwave Theory Tech. MTT-34, 994 (1986).
[Crossref]

Cronson, H. M.

H. M. Cronson, “Picosecond-Pulse Sequential Waveform Generation,” IEEE Trans. Microwave Theory Tech. MTT-23, 1048 (1975).
[Crossref]

Duh, K. H. G.

P. C. Chao, P. M. Smith, U. K. Mishra, S. C. Palmateer, K. H. G. Duh, J. C. M. Hwang, “Quarter-Micron Low-Noise High-Electron Mobility Transistors,” in Proceedings, IEEE Cornell Conference Advanced Concepts High-Speed Semiconductor Devices and Circuits (July1985).

Eberly, J. H.

L. Allen, J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).

Eisenstein, G.

R. S. Tucker, S. K. Korotky, G. Eisenstein, U. Koren, L. W. Schultz, J. J. Vaselka, “20 GHz Active mode-Locking of a 1.55 μm InGaAsP Laser,” Electron. Lett. 21, 239 (1985).
[Crossref]

Feit, M. D.

Fleck, J. A.

Goddi, A.

O. Seddiki, A. Goddi, R. Mounet, J. F. Morhange, C. Hirliman, “New Optical Design for a Jet Amplifier,” in Ultrafast Phenomena, Vol. 5, G. Fleming, A. Siegman, Eds. (Springer Verlag, Berlin, 1986);W. H. Knox, M. C. Downer, R. L. Fork, C. V. Shank, “Amplified Femtosecond Optical Pulses and Continuum Generation at 5-kHz Repetition Rate,” Opt. Lett. 9, 552 (1984).
[Crossref] [PubMed]

Haner, M.

M. Haner, W. S. Warren, to be submitted for publication;L. P. Mollenauer, J. P. Gordon, M. N. Islam, “Soliton Propagation in Long Fibers with Periodically Compensated Loss,” IEEE J. Quantum Electron QE-22, 157 (1986).
[Crossref]

A preliminary report of this work is M. Haner, F. Spano, W. S. Warren, “Picosecond Pulse Shaping and Phase Shifting for Molecular Spectroscopy,” in Ultrafast Phenomena, Vol. 5, G. Fleming, A. Siegman, Eds. (Springer-Verlag, Berlin, 1986).

Heritage, J. P.

Hirliman, C.

O. Seddiki, A. Goddi, R. Mounet, J. F. Morhange, C. Hirliman, “New Optical Design for a Jet Amplifier,” in Ultrafast Phenomena, Vol. 5, G. Fleming, A. Siegman, Eds. (Springer Verlag, Berlin, 1986);W. H. Knox, M. C. Downer, R. L. Fork, C. V. Shank, “Amplified Femtosecond Optical Pulses and Continuum Generation at 5-kHz Repetition Rate,” Opt. Lett. 9, 552 (1984).
[Crossref] [PubMed]

Hoult, D. I.

M. S. Silver, R. I. Joseph, D. I. Hoult, Phys. Rev. A 31, 2753 (1985).
[Crossref] [PubMed]

Hwang, J. C. M.

P. C. Chao, P. M. Smith, U. K. Mishra, S. C. Palmateer, K. H. G. Duh, J. C. M. Hwang, “Quarter-Micron Low-Noise High-Electron Mobility Transistors,” in Proceedings, IEEE Cornell Conference Advanced Concepts High-Speed Semiconductor Devices and Circuits (July1985).

Joseph, R. I.

M. S. Silver, R. I. Joseph, D. I. Hoult, Phys. Rev. A 31, 2753 (1985).
[Crossref] [PubMed]

Joyner, C. H.

R. C. Alferness, C. H. Joyner, L. L. Buhl, S. K. Korotky, “High Speed Traveling-Wave Directional Coupler Switch/Modulator for λ = 1.32 μm,”IEEE J. Quantum Electron. QE-19, 1339 (1983);T. Sueta, M. Izutsu, “High-Speed Guided-Wave Optical Components,” inTechnical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1981), paper TUM 2.
[Crossref]

Kogelnik, H.

H. Kogelnik, R. V. Schmidt, “Switched Directional Couplers with Alternating Δβ,” IEEE J. Quantum Electron. QE-12, 392 (1976).

Koren, U.

R. S. Tucker, S. K. Korotky, G. Eisenstein, U. Koren, L. W. Schultz, J. J. Vaselka, “20 GHz Active mode-Locking of a 1.55 μm InGaAsP Laser,” Electron. Lett. 21, 239 (1985).
[Crossref]

Korotky, S. K.

R. S. Tucker, S. K. Korotky, G. Eisenstein, U. Koren, L. W. Schultz, J. J. Vaselka, “20 GHz Active mode-Locking of a 1.55 μm InGaAsP Laser,” Electron. Lett. 21, 239 (1985).
[Crossref]

R. C. Alferness, C. H. Joyner, L. L. Buhl, S. K. Korotky, “High Speed Traveling-Wave Directional Coupler Switch/Modulator for λ = 1.32 μm,”IEEE J. Quantum Electron. QE-19, 1339 (1983);T. Sueta, M. Izutsu, “High-Speed Guided-Wave Optical Components,” inTechnical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1981), paper TUM 2.
[Crossref]

S. K. Korotky, R. C. Alferness, “Time-and Frequency-Domain Response of Directional-Coupler Traveling-Wave Optical Modulators,” IEEE/OSA J. Lightwave Technol. LT-1, 244 (1983).
[Crossref]

Kubota, K.

K. Kubota, J. Noda, O. Mikami, “Traveling-Wave Optical Modulator using Directional Coupler LiNbO3 Waveguide,” IEEE J. Quantum Electron. QE-16, 754 (1981).

Liecht, C. A.

A. Barna, C. A. Liecht, “Optimization of GaAs MESFET Logic Gates with Subnanosecond Propagation Delays,” IEEE J. Solid-State Circuits SC-14, 708 (1979).
[Crossref]

Lin, C. P.

C. P. Lin, J. Bates, J. T. Mayer, W. S. Warren, “Implementation of a Phase and Amplitude Modulated π Pulse for Coherent Optical Spectroscopy,” J. Chem. Phys. (submitted).

Mayer, J. T.

C. P. Lin, J. Bates, J. T. Mayer, W. S. Warren, “Implementation of a Phase and Amplitude Modulated π Pulse for Coherent Optical Spectroscopy,” J. Chem. Phys. (submitted).

McCaughan, L.

McCoy, M.

W. S. Warren, J. Bates, M. McCoy, M. Navratil, L. Mueller, “There were no Pi Pulses in Iodine Vapor: Crafted Pulses to Compensate for Rabi-Frequency Inhomogeneities,” J. Opt. Sci. Am. B3, 488 (1986).

Mikami, O.

K. Kubota, J. Noda, O. Mikami, “Traveling-Wave Optical Modulator using Directional Coupler LiNbO3 Waveguide,” IEEE J. Quantum Electron. QE-16, 754 (1981).

Mishra, U. K.

P. C. Chao, P. M. Smith, U. K. Mishra, S. C. Palmateer, K. H. G. Duh, J. C. M. Hwang, “Quarter-Micron Low-Noise High-Electron Mobility Transistors,” in Proceedings, IEEE Cornell Conference Advanced Concepts High-Speed Semiconductor Devices and Circuits (July1985).

Morhange, J. F.

O. Seddiki, A. Goddi, R. Mounet, J. F. Morhange, C. Hirliman, “New Optical Design for a Jet Amplifier,” in Ultrafast Phenomena, Vol. 5, G. Fleming, A. Siegman, Eds. (Springer Verlag, Berlin, 1986);W. H. Knox, M. C. Downer, R. L. Fork, C. V. Shank, “Amplified Femtosecond Optical Pulses and Continuum Generation at 5-kHz Repetition Rate,” Opt. Lett. 9, 552 (1984).
[Crossref] [PubMed]

Morishita, K.

K. Morishita, “Index Profiling of Three-Dimensional Optical Waveguides by the Propagation-Mode Near-Field Method,” IEEE/OSAJ. Lightwave Technol. LT-4, 1120 (1986).
[Crossref]

Mounet, R.

O. Seddiki, A. Goddi, R. Mounet, J. F. Morhange, C. Hirliman, “New Optical Design for a Jet Amplifier,” in Ultrafast Phenomena, Vol. 5, G. Fleming, A. Siegman, Eds. (Springer Verlag, Berlin, 1986);W. H. Knox, M. C. Downer, R. L. Fork, C. V. Shank, “Amplified Femtosecond Optical Pulses and Continuum Generation at 5-kHz Repetition Rate,” Opt. Lett. 9, 552 (1984).
[Crossref] [PubMed]

Mueller, L.

W. S. Warren, J. Bates, M. McCoy, M. Navratil, L. Mueller, “There were no Pi Pulses in Iodine Vapor: Crafted Pulses to Compensate for Rabi-Frequency Inhomogeneities,” J. Opt. Sci. Am. B3, 488 (1986).

Navratil, M.

W. S. Warren, J. Bates, M. McCoy, M. Navratil, L. Mueller, “There were no Pi Pulses in Iodine Vapor: Crafted Pulses to Compensate for Rabi-Frequency Inhomogeneities,” J. Opt. Sci. Am. B3, 488 (1986).

Noda, J.

K. Kubota, J. Noda, O. Mikami, “Traveling-Wave Optical Modulator using Directional Coupler LiNbO3 Waveguide,” IEEE J. Quantum Electron. QE-16, 754 (1981).

Palmateer, S. C.

P. C. Chao, P. M. Smith, U. K. Mishra, S. C. Palmateer, K. H. G. Duh, J. C. M. Hwang, “Quarter-Micron Low-Noise High-Electron Mobility Transistors,” in Proceedings, IEEE Cornell Conference Advanced Concepts High-Speed Semiconductor Devices and Circuits (July1985).

Schmidt, R. V.

H. Kogelnik, R. V. Schmidt, “Switched Directional Couplers with Alternating Δβ,” IEEE J. Quantum Electron. QE-12, 392 (1976).

Schultz, L. W.

R. S. Tucker, S. K. Korotky, G. Eisenstein, U. Koren, L. W. Schultz, J. J. Vaselka, “20 GHz Active mode-Locking of a 1.55 μm InGaAsP Laser,” Electron. Lett. 21, 239 (1985).
[Crossref]

Seddiki, O.

O. Seddiki, A. Goddi, R. Mounet, J. F. Morhange, C. Hirliman, “New Optical Design for a Jet Amplifier,” in Ultrafast Phenomena, Vol. 5, G. Fleming, A. Siegman, Eds. (Springer Verlag, Berlin, 1986);W. H. Knox, M. C. Downer, R. L. Fork, C. V. Shank, “Amplified Femtosecond Optical Pulses and Continuum Generation at 5-kHz Repetition Rate,” Opt. Lett. 9, 552 (1984).
[Crossref] [PubMed]

Silver, M. S.

M. S. Silver, R. I. Joseph, D. I. Hoult, Phys. Rev. A 31, 2753 (1985).
[Crossref] [PubMed]

Smith, P. M.

P. C. Chao, P. M. Smith, U. K. Mishra, S. C. Palmateer, K. H. G. Duh, J. C. M. Hwang, “Quarter-Micron Low-Noise High-Electron Mobility Transistors,” in Proceedings, IEEE Cornell Conference Advanced Concepts High-Speed Semiconductor Devices and Circuits (July1985).

Spano, F.

A preliminary report of this work is M. Haner, F. Spano, W. S. Warren, “Picosecond Pulse Shaping and Phase Shifting for Molecular Spectroscopy,” in Ultrafast Phenomena, Vol. 5, G. Fleming, A. Siegman, Eds. (Springer-Verlag, Berlin, 1986).

Thurston, R. N.

Tucker, R. S.

R. S. Tucker, S. K. Korotky, G. Eisenstein, U. Koren, L. W. Schultz, J. J. Vaselka, “20 GHz Active mode-Locking of a 1.55 μm InGaAsP Laser,” Electron. Lett. 21, 239 (1985).
[Crossref]

Vaselka, J. J.

R. S. Tucker, S. K. Korotky, G. Eisenstein, U. Koren, L. W. Schultz, J. J. Vaselka, “20 GHz Active mode-Locking of a 1.55 μm InGaAsP Laser,” Electron. Lett. 21, 239 (1985).
[Crossref]

Warren, W. S.

W. S. Warren, J. Bates, M. McCoy, M. Navratil, L. Mueller, “There were no Pi Pulses in Iodine Vapor: Crafted Pulses to Compensate for Rabi-Frequency Inhomogeneities,” J. Opt. Sci. Am. B3, 488 (1986).

W. S. Warren, “Effects of Arbitrary Pulse Shapes on Population Inversion and Coherence,” J. Chem. Phys. 81, 5437 (1984).
[Crossref]

C. P. Lin, J. Bates, J. T. Mayer, W. S. Warren, “Implementation of a Phase and Amplitude Modulated π Pulse for Coherent Optical Spectroscopy,” J. Chem. Phys. (submitted).

M. Haner, W. S. Warren, to be submitted for publication;L. P. Mollenauer, J. P. Gordon, M. N. Islam, “Soliton Propagation in Long Fibers with Periodically Compensated Loss,” IEEE J. Quantum Electron QE-22, 157 (1986).
[Crossref]

A preliminary report of this work is M. Haner, F. Spano, W. S. Warren, “Picosecond Pulse Shaping and Phase Shifting for Molecular Spectroscopy,” in Ultrafast Phenomena, Vol. 5, G. Fleming, A. Siegman, Eds. (Springer-Verlag, Berlin, 1986).

Weiner, A. M.

Wooster, W. A.

W. A. Wooster, A. Breton, Experimental Crystal Physics, (Oxford University Press, London1970).

Electron. Lett. (1)

R. S. Tucker, S. K. Korotky, G. Eisenstein, U. Koren, L. W. Schultz, J. J. Vaselka, “20 GHz Active mode-Locking of a 1.55 μm InGaAsP Laser,” Electron. Lett. 21, 239 (1985).
[Crossref]

IEEE J. Quantum Electron. (4)

H. Kogelnik, R. V. Schmidt, “Switched Directional Couplers with Alternating Δβ,” IEEE J. Quantum Electron. QE-12, 392 (1976).

R. C. Alferness, “Electrooptic Guided-Wave Device for General Polarization Transformations,” IEEE J. Quantum Electron. QE-17, 965 (1981).
[Crossref]

R. C. Alferness, C. H. Joyner, L. L. Buhl, S. K. Korotky, “High Speed Traveling-Wave Directional Coupler Switch/Modulator for λ = 1.32 μm,”IEEE J. Quantum Electron. QE-19, 1339 (1983);T. Sueta, M. Izutsu, “High-Speed Guided-Wave Optical Components,” inTechnical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1981), paper TUM 2.
[Crossref]

K. Kubota, J. Noda, O. Mikami, “Traveling-Wave Optical Modulator using Directional Coupler LiNbO3 Waveguide,” IEEE J. Quantum Electron. QE-16, 754 (1981).

IEEE J. Solid-State Circuits (1)

A. Barna, C. A. Liecht, “Optimization of GaAs MESFET Logic Gates with Subnanosecond Propagation Delays,” IEEE J. Solid-State Circuits SC-14, 708 (1979).
[Crossref]

IEEE Trans. Microwave Theory Tech. (4)

S. B. Cohn, “Slot Line on a Dielectric Substrate,” IEEE Trans. Microwave Theory Tech. MTT-17, 833 (1969);R. E. Collin, Field Theory of Guided Waves (McGraw-Hill, New York, 1960).

R. C. Alferness, “Waveguide Electrooptic Modulators,” IEEE Trans. Microwave Theory Tech. MTT-30, 1121 (1982).
[Crossref]

H. M. Cronson, “Picosecond-Pulse Sequential Waveform Generation,” IEEE Trans. Microwave Theory Tech. MTT-23, 1048 (1975).
[Crossref]

K. B. Bhasin, D. J. Connolly, “Advances in Gallium Arsenide Monolithic Microwave Integrated-Circuit Technology for Space Communications Systems,” IEEE Trans. Microwave Theory Tech. MTT-34, 994 (1986).
[Crossref]

IEEE/OSA J. Lightwave Technol. (1)

S. K. Korotky, R. C. Alferness, “Time-and Frequency-Domain Response of Directional-Coupler Traveling-Wave Optical Modulators,” IEEE/OSA J. Lightwave Technol. LT-1, 244 (1983).
[Crossref]

IEEE/OSAJ. Lightwave Technol. (1)

K. Morishita, “Index Profiling of Three-Dimensional Optical Waveguides by the Propagation-Mode Near-Field Method,” IEEE/OSAJ. Lightwave Technol. LT-4, 1120 (1986).
[Crossref]

J. Chem. Phys. (1)

W. S. Warren, “Effects of Arbitrary Pulse Shapes on Population Inversion and Coherence,” J. Chem. Phys. 81, 5437 (1984).
[Crossref]

J. Opt. Sci. Am. (1)

W. S. Warren, J. Bates, M. McCoy, M. Navratil, L. Mueller, “There were no Pi Pulses in Iodine Vapor: Crafted Pulses to Compensate for Rabi-Frequency Inhomogeneities,” J. Opt. Sci. Am. B3, 488 (1986).

J. Opt. Soc. Am. (1)

Opt. Lett. (1)

Phys. Rev. A (1)

M. S. Silver, R. I. Joseph, D. I. Hoult, Phys. Rev. A 31, 2753 (1985).
[Crossref] [PubMed]

Proceedings, IEEE Cornell Conference Advanced Concepts High-Speed Semiconductor Devices and Circuits (1)

P. C. Chao, P. M. Smith, U. K. Mishra, S. C. Palmateer, K. H. G. Duh, J. C. M. Hwang, “Quarter-Micron Low-Noise High-Electron Mobility Transistors,” in Proceedings, IEEE Cornell Conference Advanced Concepts High-Speed Semiconductor Devices and Circuits (July1985).

Other (6)

C. P. Lin, J. Bates, J. T. Mayer, W. S. Warren, “Implementation of a Phase and Amplitude Modulated π Pulse for Coherent Optical Spectroscopy,” J. Chem. Phys. (submitted).

M. Haner, W. S. Warren, to be submitted for publication;L. P. Mollenauer, J. P. Gordon, M. N. Islam, “Soliton Propagation in Long Fibers with Periodically Compensated Loss,” IEEE J. Quantum Electron QE-22, 157 (1986).
[Crossref]

L. Allen, J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).

A preliminary report of this work is M. Haner, F. Spano, W. S. Warren, “Picosecond Pulse Shaping and Phase Shifting for Molecular Spectroscopy,” in Ultrafast Phenomena, Vol. 5, G. Fleming, A. Siegman, Eds. (Springer-Verlag, Berlin, 1986).

W. A. Wooster, A. Breton, Experimental Crystal Physics, (Oxford University Press, London1970).

O. Seddiki, A. Goddi, R. Mounet, J. F. Morhange, C. Hirliman, “New Optical Design for a Jet Amplifier,” in Ultrafast Phenomena, Vol. 5, G. Fleming, A. Siegman, Eds. (Springer Verlag, Berlin, 1986);W. H. Knox, M. C. Downer, R. L. Fork, C. V. Shank, “Amplified Femtosecond Optical Pulses and Continuum Generation at 5-kHz Repetition Rate,” Opt. Lett. 9, 552 (1984).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Experimental apparatus for nanosecond resolution laser pulse generation. Devices in black with white lettering limit the possible rise time.

Fig. 2
Fig. 2

Schematic of GaAs FET switch-based circuit for generating arbitrarily shaped microwave pulses. The circuit consists of multiple three-switch units with adjustable bias voltages (see text).

Fig. 3
Fig. 3

Examples of the pulse shaping complexity, which is possible with the device in Fig. 2. The complex pulse shape [sech(αT)]1+5 i is useful for selective transition excitation.

Fig. 4
Fig. 4

Example of the best resolution achievable with the microwave pulse shaper. The optical version of this pulse is presented in Fig. 11.

Fig. 5
Fig. 5

Physical layout of electrooptic directional coupler.

Fig. 6
Fig. 6

Transverse profile of the diffused titanium waveguides.

Fig. 7
Fig. 7

Experimental setup for characterizing the frequency response of the microwave pulse shaper and electrooptic modulator.

Fig. 8
Fig. 8

Relative conversion efficiency as a function of frequency for the modulator.

Fig. 9
Fig. 9

Conversion efficiency as a function of microwave impulse power.

Fig. 10
Fig. 10

Optical field profile out of the modulator.

Fig. 11
Fig. 11

Simple Hermite optical shaped pulse showing the best resolution we can obtain. The streak camera trace shows that the sharpest structural details are ∼10 ps wide.

Fig. 12
Fig. 12

Pulse bandwidth as a function of output pulse length. The capability this demonstrates for variable length transform-limited pulses is useful for spectroscopic studies (see text).

Fig. 13
Fig. 13

Apparatus for shaped pulse amplification.

Fig. 14
Fig. 14

Streak camera traces of input and output pulses from the amplifier in Fig. 12. The gain is ∼107. The minor observed distortions could be eliminated by predistorting the input pulse to create the correct output.

Fig. 15
Fig. 15

Optical pulses produced by the microwave shapes in Fig. 3. The optical pulses were monitored with a fast photodiode and agree with our expectations: (a) optical sech real component; (b) optical sech imaginary component.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

W = / 2 [ ( ϕ / x ) 2 + ( ϕ / y ) 2 ] dxdy ,
2 ϕ / x 2 + 2 ϕ / y 2 = 0 ,
Γ = G / V E ( x , y ) [ E ( x , y ) ] dxdy ,

Metrics